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Abstract

Classification algorithms are increasingly used in areas such as housing, credit, and law

enforcement in order to make decisions affecting peoples’ lives. These algorithms can change

individual behavior deliberately (a fraud prediction algorithm deterring fraud) or inadvertently

(content sorting algorithms spreading misinformation), and they are increasingly facing pub-

lic scrutiny and regulation. Some of these regulations, like the elimination of cash bail in

some states, have focused on lowering the stakes of certain classifications. In this paper we

characterize how optimal classification by an algorithm designer can affect the distribution of

behavior in a population—sometimes in surprising ways. We then look at the effect of de-

mocratizing the rewards and punishments, or stakes, to algorithmic classification to consider

how a society can potentially stem (or facilitate!) predatory classification. Our results speak to

questions of algorithmic fairness in settings where behavior and algorithms are interdependent,

and where typical measures of fairness focusing on statistical accuracy across groups may not

be appropriate.

1 Introduction

Algorithms are ubiquitous in modern life, particularly classification algorithms, which assign

individuals, texts, pictures, and/or other things to categories. High profile examples of such algo-

rithms include credit scores, the COMPAS scoring algorithm intended to predict recidivism risk,

and facial recognition systems. When these algorithms classify behavior, they may also affect be-

havior. An algorithm designed to trigger an audit when fraud is suspected may also serve to reduce

the level of fraud that people engage in. An algorithm designed to evaluate college readiness may
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Callander, John Duggan, Sandy Gordon, Cathy Hafer, Alex Hirsch, Zhaotian Luo, Alastair Smith, Randy Stevenson,

and Rick Wilson for incredibly helpful comments and suggestions. All remaining errors are our own.
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also promote college readiness in a population of students. These examples illustrate an important

aspect of classification algorithms: not only are they are used to make decisions that affect peoples’

lives, but they also affect the life choices that people make.

Over the past 25 years there has been increasing attention paid to the proper usage and design

of classification algorithms. For example, some governments have regulated the use of various

types of algorithmic classification data for some decisions within the realm of credit, housing, and

employment. These are not bans on the algorithms themselves, of course — rather these regu-

lations are more properly thought of as reducing the stakes of some algorithmic classifications.

A high-profile example is the elimination of cash bail, which reduces the stakes of receiving a

high pretrial release risk score. Another example is the prohibition of credit scores to determine

a person’s eligibility for housing, which reduces the stakes of classification on the basis of credit-

worthiness. While algorithms could of course (at least in theory) be directly regulated, there are

many reasons that democratic intervention regarding classification algorithms tends to be focused

on the stakes of the algorithm’s determinations, rather than the details of the algorithm itself.1

We present a model motivated by these two facts: algorithms affect behavior in potentially

meaningful ways, and the stakes of an algorithm may be an object of democratic choice. Specif-

ically, we consider a situation in which individuals in a population make a binary, and potentially

costly, choice about whether to comply or not. There exists a designer with preferences over

both compliance and over how individuals are rewarded and punished. The designer’s algorithm

will classify each individual as either a “1” (deserving of a reward) or as a “0” (deserving of a

penalty), conditional on a noisy signal of each individual’s choice. The designer can implement

any classification algorithm he wants in order to further his goals.

We begin by considering the optimal classification algorithm for the designer when the stakes

of the algorithm (the rewards or punishments meted to individuals) are exogenous. In this setting,

the designer’s objectives will play a large role in the equilibrium rates of compliance that are

observed. Perhaps unsurprisingly, with a sufficiently punitive system of rewards and penalties, a

designer can induce anywhere from virtually 0% compliance to virtually 100% compliance, simply

through his choice of classification algorithm. Moreover, with a sufficiently punitive system of

rewards and penalties the designer can induce a distribution of classification outcomes that are

virtually 100% true positives (rewarded compliers); virtually 100% true negatives (penalized non-

compliers); virtually 100% false negatives (penalized compliers); or virtually 100% false positives

(rewarded non-compliers).

1There are some exceptions to this. For example, some data is subject to privacy protections, algorithms can be

audited and/or subject to minimum accuracy/reliability thresholds, and so forth. But, aside from situations in which

the algorithm is being used within a specific field (such as health care) or by a regulated entity (including government

agencies themselves), such “statistical” intervention is rare in practice.
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We then consider what a designer can accomplish when the rewards and punishments stem-

ming from classification are chosen democratically by the individuals who will be classified by the

algorithm. We assume that these rewards and penalties satisfy a budget balance condition, so that

the net penalties paid by individuals classified as a “0” are redistributed to the individuals clas-

sified as a “1.” Individuals face varying personal costs to compliance, and may also have a taste

for aggregate compliance. In equilibrium, the optimal classifier and the optimal system of rewards

are mutually reinforcing. More specifically, the optimal classifier represents a best response by

the designer to the democratically chosen system of rewards and penalties. Moreover, conditional

on the optimal classifier chosen by the designer, the democratically chosen system of rewards is a

Condorcet winner.

Perhaps the most powerful finding from the model is that democratic institutions not only

constrain the algorithm designer — in many cases, they will totally circumscribe the kinds of

behaviors the designer can incentivize. Our results can be cast in terms of two possible types of

classifiers. The first we term a null classifier; this type of classifier disregards signal information

about individuals’ compliance decisions, and classifies every individual as deserving of reward or

penalty with equal probability. In the presence of a null classifier, individuals only comply if they

have an intrinsic taste for compliance. We term any classifier that utilizes signal information as

non-null. So long as rewards and penalties are differentiated, non-null classifiers always induce

some individuals to alter their behavior relative to their intrinsic taste for compliance.

Surprisingly, we show that when rewards and punishments are democratically chosen, every

non-null classifier induces the same level of equilibrium compliance. This occurs because the me-

dian voter’s preferences for rewards and penalties reduce to a preference for an optimal aggregate

level of compliance. For any non-null classifier, a system of rewards and penalties can always be

designed to induce the median’s optimal level of compliance. Consequently, the designer’s pref-

erences can have no effect on equilibrium compliance in any equilibrium in which the optimal

classifier is non-null. However, both the designer and the voters can always induce a “null” out-

come in which only individuals with an intrinsic taste for compliance comply. The designer can

achieve this through any null classifier, while the voters can achieve this by setting the rewards and

penalties associated with compliance equal to zero.

In some instances these types of null equilibria are the only possible equilibria, and this can be

socially desirable. When the preferences of voters and the designer are at odds, in terms of their

taste for aggregate compliance, it may be the case that no non-null equilibrium is attainable. If the

designer, for example, seeks to maximize ticket revenue by using an algorithm that incentivizes

non-compliance, and if the median voter values aggregate compliance, then democratic institutions

can serve to disable the (potentially predatory) algorithm. On the other hand, there may also

be instances in which the democratic choice of rewards and punishments leads to a unique null
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equilibrium that represents an inferior outcome for the median voter, for the designer, and for

aggregate social welfare. In this case, it may be better to take the decision to set rewards and

penalties away from the public. Finally, we can construct examples, similar to a game of matching

pennies, in which there are no (pure strategy) equilibria.

1.1 Related Literature

Our theory draws from a long-running literature on the political economy of public policy, the

emerging literature on algorithmic fairness (or algorithmic bias), and a recent literature on what

we refer to as algorithmic endogeneity.

Political Economy. The relevant literature on political economy is rich and largely well-known.

Our model ultimately employs a version of the seminal framework developed by Meltzer and Richard

(1981) to consider how democratic choice and investment incentives interact in equilibrium. Ac-

cordingly, some of our results mirror theirs (e.g., individuals do not fully internalize the social ben-

efits of public policy, and democratic choice is generally socially inefficient). As in their model, the

democratic process in equilibrium is essentially equivalent to the preferences of the median voter

(Black (1948)). Additionally, our model introduces the beginnings of a principal-agent problem

(Gailmard (2014)). While we do not consider selection or retention in our model, the model allows

for the algorithm designer (the agent) to have different preferences than the voters (the “princi-

pals”) and illustrates how such divergence can affect public policy in equilibrium. In particular,

when the preferences of the principal and agent are sufficiently opposed to each other, public policy

will be completely ineffective in equilibrium.

The most closely related paper in this vein is the recent contribution by Alexander (2023),

who considers the collective preferences over using carrots (positive rewards) or sticks (negative

penalties) to induce socially desirable behavior. Alexander’s analysis illustrates that — within a

Meltzer-Richard style framework — carrots and sticks are not equivalent in democratic choice

environments, because each voter should take into account his or her own likelihood of receiv-

ing a reward versus benefiting from others being fined. Our analysis complements Alexander’s,

particularly in terms of identifying an implicitly “predatory” motivation on the part of the median

voter when choosing the reward or penalty that the algorithm will impose on all individualls in the

population.

Algorithmic Fairness. Beginning about 15 years ago, scholars and policymakers began to fo-

cus on how algorithms, and the data on which they are based, might treat people unfairly (e.g.,

Dwork et al. (2012)). This emergence followed a series of findings across multiple policy areas that
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demonstrated that racial, gender, or other forms of bias often characterize algorithmic decision-

making in important policy area. A high-profile example of this is housing and lending (e.g.,

Ladd (1998), Munnell et al. (1996), Foggo and Villasenor (2021)). It has also been documented

in criminal justice (e.g., Angwin et al. (2016) and Washington (2018)), college admissions (e.g.,

Kleinberg, Ludwig, Mullainathan and Rambachan (2018), Martinez Neda, Zeng and Gago-Masague

(2021)), and advertising (e.g., Miller and Hosanagar (2019)). The range of these findings, along

with early theoretical results (e.g., Kleinberg, Mullainathan and Raghavan (2016), Chouldechova

(2017)) prompted scholars to develop and compare different notions of fairness in algorithmic

settings.2 Unsurprisingly, the relationship between algorithmic fairness and economic theories of

discrimination was soon noted (e.g., Kleinberg, Lakkaraju, Leskovec, Ludwig and Mullainathan

(2018), Lang and Kahn-Lang Spitzer (2020), and Patty and Penn (2023a)).3 While our focus in

this article is not algorithmic fairness, per se, our results extend this literature by considering the

consequences of allowing individuals subject to an algorithm to have a role in determining the

impact of the algorithm on all individuals subject to it.4

Algorithmic Endogeneity. Our model allows both the algorithm designer and the voters to play

a role in choosing the algorithm and, accordingly, endows all of the actors with preferences over

the algorithm’s decisions and the data (i.e. the individual behaviors) the algorithm induces in equi-

librium. This brings our results into conversation with the very new literature on what we term

algorithmic endogeneity: the algorithm affects the data distribution, and the data distribution af-

fects what one considers an optimal algorithm. Interest in this topic truly emerged a little less than

a decade ago. Hardt et al. (2016) defined the notion of strategic classification, which captures the

notion of an optimal algorithm when the algorithm affects the data distribution itself. This concept

was subsequently generalized under the moniker performative prediction (Perdomo et al. (2020)).

Our results augment this early literature primarily through its focus on strategic individual choice

as the foundation of how changes in the algorithm affect the data distribution itself. As others have

noted (e.g., Kleinberg, Lakkaraju, Leskovec, Ludwig and Mullainathan (2018), Patty and Penn (2023d)),

this step is required before one can judge any algorithm’s welfare impact. Our model is also related

the “manipulation” of algorithms through data manipulation (Frankel and Kartik (2022)).

2For some early discussions of the different notions of algorithmic fairness, see Kusner et al. (2017),

Corbett-Davies and Goel (2018), Narayanan (2018), Chouldechova and Roth (2020), Berk et al. (2018),

Kleinberg and Mullainathan (2019), and Sharifi-Malvajerdi, Kearns and Roth (2019). For a recent overview,

see Mitchell et al. (2021).
3Several earlier works on employment discrimination presaged the current state of the literature, including

Coate and Loury (1993), Fang and Moro (2011), and Fryer Jr (2007).
4A recent consideration of a setting similar to ours that is more squarely focused on algorithmic fairness is offered

by Patty and Penn (2023b).
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2 The Model

We consider a model of individual behavior and algorithmic classification, in which a continuum

of individuals, N = [0, 1], is faced with choosing from a set of two behaviors, B = {0, 1}. After

making his or her individual choice of behavior, βi ∈ B, each individual i ∈ N will be assigned a

decision, di ∈ {0, 1}, by another actor, referred to as the algorithm designer, who is denoted by

D. The designer D makes this assignment choice for each individual on the basis of potentially

noisy information about βi, and the designer, D, may have preferences over both β ≡ {βi}i∈N and

d ≡ {di}i∈N .

With the noisiness of his or her information about individual behaviors and his or her prefer-

ences in hand, D must design a classification algorithm (or classifier) that rewards or punishes

individuals for certain types of behaviors. The classification algorithm will map a noisy but infor-

mative signal received regarding individual i’s behavior, si ∈ {0, 1}, into a decision, di ∈ {0, 1}.

Each individual i ∈ N will observe the details of the algorithm and choose their behavior, βi ∈ B,

possibly incurring a cost to affect the algorithm’s decision regarding i, or di.

2.1 Timing of Decisions

At the beginning of the game, each individual i ∈ N privately observes his or her type, γi, which

represents his or her net cost of choosing βi = 1 (as opposed to βi = 0). Note that γi can be

negative, which implies that individual i experiences a direct net benefit from choosing βi = 1.5

Remark 1. If we stopped here and omitted the algorithm designer (and algorithm) from the anal-

ysis, each individual’s optimal choice of βi is simply

βS
i (γi) =







1 if γi ≤ 0,

0 if γi > 0.
(1)

This represents sincere behavior, uncontaminated by incentives emanating from individuals’ pref-

erences over the decision rendered by the algorithm. We refer to this behavioral baseline later

when characterizing the effects of the designer’s preferences and algorithm design choices.

Type Distribution. We assume that there is a unit mass of individuals whose costs are distributed

according to a cumulative distribution function (CDF) denoted by F : R → [0, 1], and that F is

continuously differentiable, with probability density function (PDF), denoted by f : R → R+. In

addition, we make the following assumption about the PDF, f .

5For presentational simplicity, we normalize the continuum of individuals by ordering the individuals according to

their types: i < j ⇔ γi ≤ γj .
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Assumption 1. Individuals’ costs are distributed according to a log-concave PDF f with full

support on R.

The assumption that f possesses full support implies that, in equilibrium, any algorithm de-

signed by D will induce a positive mass of individuals to choose βi = 0 and a positive mass

to choose βi = 1. For reasons that will become clear, we refer to F (0) as the level of sincere

prevalence.

The Designer’s Problem. Simultaneous to the individuals’ observing their types, the designer,

D, designs an algorithm, δ ≡ (δ1, δ0) ∈ [0, 1]2. An algorithm is a pair of probabilities, each

representing the probability that any individual will be classified according to their signal:

Pr[di = si | δ] = δsi .

The Signal Structure. The inputs to the algorithm (the binary signal for each individual i) are

signals that are noisy, but correlated with the individual’s choice of behavior, βi. After observing δ

and γi, each individual i simultaneously chooses a behavior, βi ∈ B. Conditional on βi, the signal

si ∈ {0, 1} is generated according to the following distribution:

Pr[si = βi] ≡ φ ∈

(

1

2
, 1

]

.

The probability φ represents the accuracy of the information about βi for each individual i ∈ N ,6

and is assumed to be common knowledge throughout. When φ = 1, the algorithm is capable of

100% accuracy in rendering its decisions. This extreme baseline will be helpful from time to time

as we illustrate the origins of the incentives identified by our analysis below.

2.2 Individual Preferences

Each individual i ∈ N’s payoff function is as follows:

ui(βi, di | γi, r, t) = r · di − βi · γi. (2)

The term r captures an exogenous reward to classification (for expositional clarity, we’ll refer to

r as a “reward” even when r is negative and represents a penalty). Each voter i ∈ N classified as

di = 1 by the algorithm receives an additive payoff of r ∈ R, and no additional payoff if di = 0.

6We assume that, conditional on (βi, βj) for any distinct pair of individual i 6= j ∈ N , si is distributed indepen-

dently across individuals.
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Note at this point that, if r = 0, the sincere strategy, βS
i , as defined in Equation (1), is optimal.

However, if r 6= 0 then, generically, some individuals will find a different strategy optimal.7 We

will of course return to this below. Prior to that, we complete the setup of the model by describing

the algorithm designer’s preferences.

2.3 The Designer’s Preferences

Our designer’s preferences are potentially over either (or both) individual behavior and the accu-

racy of the algorithm’s determinations. Specifically, we assume that D’s payoff from the algorithm

assigning decision di ∈ {0, 1} to an individual i who chose behavior βi ∈ {0, 1} is equal to

uD(di, βi) ≡































A1 if βi = 1 is rewarded (di = 1),

A0 if βi = 1 is not rewarded (di = 0),

B1 if βi = 0 is rewarded (di = 1), and

B0 if βi = 0 is not rewarded (di = 0).

(3)

with (A0, A1, B0, B1) ∈ R+ being exogenous and commonly known.8 To save space, we will

denote the designer’s preferences by η ≡ {A1, A0, B1, B0}. Rewriting (3) as a function of the

algorithm’s confusion matrix, the designer’s ex post payoff, conditional on βi and di, is defined by

the following:

Decision

Behavior di = 1 di = 0

βi = 1
A1 A0

(True Positive) (False Negative)

βi = 0
B0 B1

(False Positive) (True Negative)

Table 1: The Designer’s Ex Post Payoffs

Table 1 will be useful in carrying out, and interpreting, our analysis that follows. Now we turn to

consider how these payoffs shape D’s incentives when designing the algorithm.

7Here, the genericity is with respect to Lebesgue measure on R× [0, 1]2.
8The assumption that A1, A0, B1, B0 ≥ 0 is without loss of generality, as D’s behavior is unique up to a positive

affine scaling of these payoffs. This would change qualitatively if we consider D’s incentive to invest in increasing the

accuracy of the signal, φ.
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2.4 The Algorithm Designer’s Objectives

The functional form provided by Equation 3 can capture a variety of objectives of the algorithm

designer, and we discuss four archetypes. The first of these (accuracy-maximization) is a stan-

dard baseline in statistical decision theory. The second (compliance-maximization) is a standard

baseline in many implementation problems (such as reducing bad behaviors like fraud and/or pro-

moting good behaviors like physical exercise). The third and fourth archetypes are less standard,

so we begin with a quick definition of accuracy and compliance maximization.

2.4.1 Accuracy-Maximization

An accuracy-maximizing designer simply seeks to maximize the predictive performance of the al-

gorithm in the sense of maximizing the Pr[di = βi]. This is the probability that the algorithm “gets

it right” for a randomly drawn individual. The following defines accuracy-maximizing designers

in terms of the parameters for (3).

Definition 1. The designer D is accuracy-maximizing if η = {A1, A0, B1, B0} satisfies the fol-

lowing:

A1 = B1 = 1 and A0 = B0 = 0.

As we will return to, note that an accuracy-maximizing designer is indifferent about the in-

dividuals’ choices of behavior — such a designer only cares about minimizing the rate of errors

produced by the algorithm.

2.4.2 Compliance-Maximization

A compliance-maximizing designer simply seeks to maximize the proportion of individuals who

choose βi = 1. Such a designer is insensitive to the accuracy of the algorithm’s decisions: such

a designer’s preferences are equivalent to “the ends justify the means.” The following defines

compliance-maximizing designers in terms of the parameters for (3).

Definition 2. The designer D is compliance-maximizing if η = {A1, A0, B1, B0} satisfies the

following:

A1 = A0 = 1 and B1 = B0 = 0.

As noted earlier, examples of compliance-maximizing incentives would include a designer

crafting a ticketing algorithm in order to maximize safe driving, or a fraud detection algorithm

designed to minimize fraud.
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2.4.3 Moral Hazard

The third archetype is a combination of the first two. It represents a designer who faces no risk

(in the sense that his or her payoff is independent of βi) if individual i is assigned the decision

di = 0, but D’s payoff is sensitive to βi if the algorithm assigns i the decision di = 1. These

preferences are very similar to the preferences assumed in models of moral hazard. Such models

are widely used, including in models of statistical discrimination (e.g., Coate and Loury (1993),

Patty and Penn (2023c)). Formally, a designer facing moral hazard receives 1 from hiring a qual-

ified person, 0 from hiring an unqualified person, and w ∈ (0, 1) for not hiring (w represents the

loss from paying a wage to an unqualified worker). The following defines a designer facing moral

hazard in terms of the parameters for (3).

Definition 3. The designer D faces moral hazard if η = {A1, A0, B1, B0} satisfies the following:

A1 = 1, and B1 = A0 = w ∈ (0, 1), and B0 = 0.

2.4.4 Predatory

The final archetype is one of a somewhat pathological decision-maker. Specifically, D has preda-

tory preferences if D’s most-preferred outcome is to not give the reward (di = 0) to an individual

i who did not comply (βi = 0). This is “pathological” in this setting because, if we conceive of

compliance as potentially a social good — which we will shortly — the designer’s ordinal prefer-

ences about behavior (βi) are the opposite of the individuals’ common preference with respect to

others’ behaviors. The following defines a designer facing moral hazard in terms of the parameters

for (3).

Definition 4. The designer D is predatory if η = {A1, A0, B1, B0} satisfies the following:

B1 = 1 and A1 = A0 = B0 = 0.

We refer to a designer with this form of preferences as “predatory” because it captures the

incentives of a designer who benefits from inducing noncompliance. There are several ways this

can manifest in practice, including predatory towing, the issuing of punitive interest rates/fees for

late payments, or requiring that a loan be over-secured.

The four types of designers described above are mutually exclusive though clearly not ex-

haustive. The preferences described in Equation 3 can capture a rich array of motivations for the

algorithm designer, some of which we will return to later. We now consider how individuals’

behavioral choices will respond to any classifier-reward pair, (δ, r).
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3 Responding to the Algorithm: Algorithmic Endogeneity

In many social science applications, some or all individuals may be aware of the details of the

algorithm by which they are classified. With this awareness, individuals might alter their behaviors

in anticipation of being classified by an algorithm. The probability that D classifies an individual

sending signal si as di = si is δsi . Accordingly, conditional on the algorithm, δ, and the individual

cost, γi, if i ∈ N chooses βi = 1, then i receives an expected payoff equal to

EUi(βi = 1 | γi, δ, φ) ≡ Edi [ui(βi = 1, · | γi, r, t),

= r · (φ · δ1 + (1− φ)(1− δ0))− γi.

If the individual chooses βi = 0, then i receives an expected payoff equal to

EUi(βi = 0 | γi, δ, φ) ≡ Edi [ui(βi = 1, · | γi, r, t),

= r · (φ · (1− δ0) + (1− φ)δ1).

Consequently, any individual i ∈ N will choose βi = 1 if

EUi(βi = 1 | γi, δ, φ) ≥ EUi(βi = 0 | γi, δ, φ),

γi ≤ r · (δ1 + δ0 − 1) (2φ− 1). (4)

The left side of Equation 4 is i’s direct cost of choosing βi = 1, and the right side represents

the relative benefit to the individual of choosing βi = 1 versus βi = 0 in terms of the reward,

r, the algorithm, δ = (δ1, δ0), and the accuracy of the signal, φ ∈ (1
2
, 1]. The right hand side

of Equation 4 will be central to much of our analysis, so we use it as the basis for defining the

expected responsiveness of any algorithm δ.

Definition 5. For any φ ∈ (1/2, 1], the expected responsiveness of any algorithm δ is defined by

the following:

ρ(δ, φ) ≡ (δ1 + δ0 − 1) (2φ− 1).

In words, the expected responsiveness of an algorithm measures the change in the likelihood

that i will be classified as di = 1 by choosing βi = 1 as opposed to βi = 0, conditional on the

algorithm δ and the accuracy of the signal, φ. When δ1 + δ0 > 1, individuals are more likely

to receive reward r conditional on sending a signal of si = 1 than conditional on si = 0; when

δ1 + δ0 < 1, individuals are less likely. With this, we can divide algorithms into three categories.

Definition 6. An algorithm δ is

• positively responsive if ρ(δ, φ) > 0,
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• negatively responsive if ρ(δ, φ) < 0, and

• null (or, a null classifier) if ρ(δ, φ) = 0.

The reason for this language is two-fold. The decisions awarded by a responsive algorithm

are correlated with the signal received by the algorithm about the individual’s choice of behavior.9

This implies that the proportion of individuals who choose to comply (βi = 1) will be positively

correlated with a positive reward, r, if the algorithm is positively responsive. Similarly, negatively

responsive algorithms are negatively correlated with the signal.

The third category of algorithms — null classifiers — are exactly those algorithms in which

the algorithm’s decisions are uncorrelated with the signal received by the algorithm and, more

importantly, with the behavior chosen by the individual. As we shall see, when the algorithm

is null, individuals choose βi = 1 if and only if γi ≤ 0. Furthermore, this is the only class of

algorithms with this property if r 6= 0. (As mentioned above, when r = 0, all algorithms have this

property.)

An immediate implication of Equation 4 is that, conditional on D’s choice of classifier δ =

(δ1, δ0) and accuracy, φ ∈ (1
2
, 1], the equilibrium fraction of individuals investing in β = 1, or

equilibrium prevalence, is

πF (δ, φ, r) ≡ F (r · ρ(δ, φ)). (5)

We will see that equilibrium prevalence is central not only to the designer’s incentives in designing

the algorithm, it is also central to the individuals’ preferences over the reward, r.

3.1 The Designer’s Incentives: Fundamentals

Our first result regarding the designer’s algorithmic design problem is that the designer can ap-

proximate his or her highest possible payoff if the reward, r, is sufficiently large.

Proposition 1. As r → ∞ the designer can attain an expected payoff arbitrarily close to

max

[

A1, A0, B1, B0

]

.

Proof. Proofs of all numbered results are presented in Appendix A.

Proposition 1 implies that when the reward (r) is sufficiently large, the designer can design an

algorithm that will channel virtually all outcomes (i.e., all behavior/decision pairs (βi, di)) into any

9Because we have assumed that φ > 1/2, this implies that a positively (negatively) responsive algorithm’s decisions

are positively (negatively) responsive to the behavior chosen by each individual, βi.
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one of the four cells of the confusion matrix.10 Proposition 1 follows directly from the assumptions

we have made about the individuals’ preferences, rather than anything we’ve assumed about the

designer’s preferences. The proposition shows that the designer’s power to influence outcomes is

essentially unbounded if the designer can not only design the algorithm, δ, but also choose the

level of the reward, r. Accordingly, the proposition is central to our assumption below that the

individuals collectively control the level of the reward. Before reaching that point, however, we

continue to analyze the designer’s incentives with a fixed finite reward, r.

3.2 The Designer’s Optimal Algorithm

We are now in a position to characterize D’s optimal algorithm δ ≡ (δ1, δ0) given that the algorithm

will affect the equilibrium prevalence. The designer’s expected payoff from any classifier, δ, is:

EUD(δ | r, F, φ, η) = πF (δ, φ, r)(φ · (A1δ1 +A0(1− δ1)) + (1− φ)(A0δ0 +A1(1− δ0)))

+(1− πF (δ, φ, r))(φ · (B1δ0 +B0(1− δ0)) + (1− φ)(B0δ1 +B1(1− δ1))).
(6)

With (6) in hand, we can prove our first result, which characterizes the optimal algorithm for a

designer who only cares about the effect of the algorithm on individual behavior (in other words, a

designer seeking to either maximize or minimize compliance). Such a designer in our setting has a

particularly simple optimal algorithm. As stated in the next proposition, a compliance-maximizing

or minimizing designer’s optimal algorithm is always degenerate.

Proposition 2 (Optimal Compliance-Maximizing and Compliance-Minimizing Algorithms). If the

designer’s preferences η satisfy A1 = A0 = Ā ≥ 0 and B1 = B0 = B̄ ≥ 0, then the optimal

algorithm depends on r and is defined by the following:

δ∗(r, F, φ, η) =







(1, 1) if r · (Ā− B̄) > 0,

(0, 0) if r · (Ā− B̄) < 0.
(7)

and all algorithms are equivalent to the designer if r = 0 or Ā = B̄.

Our first general result (in the sense of not depending on the designer’s preferences) is that any

optimal classifier will be a corner solution in either δ1, or δ0, or both.

Proposition 3 (Optimal Algorithms Are Almost Never Interior). When r 6= 0, any optimal classi-

fication strategy for D requires either δ∗1 ∈ {0, 1}, or δ∗0 ∈ {0, 1}, or both.

10If we assumed that the distribution of costs had compact support (i.e., F (γL) = 0 and F (γH) = 1 for some pair

of finite numbers, (γL, γH) ∈ R
2), then we could replace the “arbitrarily close” qualifier with “equal.”
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Our next characterization is partial in the sense that it holds for only a subset of all possible

preferences for the designer.11 The cases we focus on here are those in which the designer has

an unambiguous preference regarding the accuracy of the algorithm’s decisions conditional on

individual behavior. We refer to these cases as accuracy aligned or accuracy misaligned designers.

We consider accuracy alignment to be a natural condition, and indeed it is satisfied by each of the

four families of designer objectives defined in Section 2.4.

Definition 7. The designer, D, is

• accuracy aligned if A1 ≥ A0 and B1 ≥ B0, and strongly accuracy aligned if at least one

inequality is strict, and

• accuracy misaligned if A1 ≤ A0 and B1 ≤ B0, and strongly accuracy misaligned if at least

one inequality is strict.

If the designer is both accuracy aligned and misaligned then the designer must be either

compliance-maximizing or minimizing. The notions of accuracy alignment or misalignment are

useful to us, because they cleanly identify a key aspect of the algorithm designer’s optimal algo-

rithm. As stated in the next proposition, any designer whose preferences are strongly accuracy

aligned or misaligned should design an algorithm that is degenerate (i.e., uses a pure strategy)

with respect to at least one of the two possible signals, si ∈ {0, 1}. This is stated formally in the

following proposition.

Proposition 4. If D is strongly accuracy aligned or misaligned, then D’s payoff is strictly quasi-

concave in δj and strictly quasiconvex in δ1−j , for some j ∈ {0, 1}.

From a technical perspective, Proposition 4 is useful because it reduces the search for the

designer’s optimal algorithm to a one-dimensional optimization problem for any fixed reward, r.

Moreover, the sign of r and the accuracy alignment or misalignment of D’s preferences pin down

the quasiconvexity/concavity properties of δ1 and δ0 (these properties are characterized in the proof

of Proposition 4).

From a substantive standpoint, Proposition 4 is informative: an accuracy-aligned algorithm

designer has an instrumental incentive to remove as much “noise” in the awarding of decisions

as possible, and this leads to a very robust conclusion that at most one of the two signals will

leave any residual uncertainty (i.e., “deliberately induced noise”) about the decision that will be

subsequently rendered by the algorithm.

11And, to be clear, we have also assumed that the distribution of costs (types) has a log-concave probability density

function, f .
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3.3 A Motivating Example: Maximizing Accuracy is Not Neutral

We’ll illustrate some of the takeaways of our model of optimal classification by considering a

designer who solely seeks to maximize accuracy: to reward individuals that comply, and to penalize

individuals that don’t. For the purposes of this example we set the reward at r = 10, and the signal

accuracy at φ = 3
4
. In this case the designer’s objectives can be described by A1 = B1 = 1

and A0 = B0 = 0. For comparability, we depict this payoff function with the confusion matrix

displayed in Table 2.

Decision

Compliance di = 1 di = 0

βi = 1
A1 = 1 A0 = 0

(True Positive) (False Negative)

βi = 0
B0 = 0 B1 = 1

(False Positive) (True Negative)

Table 2: Pure Accuracy-Maximizing Payoffs

Consider first the designer’s optimal classifier when costs to compliance, γ, are distributed

according to the Normal(0, 1) distribution. In this case, a null classifier (i.e., any δ = (δ1, 1− δ1))

will yield an equilibrium prevalence equal to

πF (δ, φ, r) = F (0) =
1

2
.

Accordingly, any null classifier in this setting will yield D an expected payoff equal to 1
2
.

If, on the other hand, D simply followed the signal, using the degenerate positively responsive

algorithm δ = (1, 1), then D will receive an expected payoff of πF (δ, φ, r) = φ = 3
4
. Thus, no

null classifier is optimal for D in this case, as D can do better with δ = (1, 1). However, note the

equilibrium prevalence induced by the degenerate positively responsive algorithm:

πF (δ, φ, r) = F (r · (2φ− 1)) = F (5) ≈ 1.

In other words, almost every individual is complying but the algorithm is penalizing 1− φ = 25%

of these complying individuals. From an ex post perspective — or, in other words, holding the

observed prevalence constant — D would strictly benefit from using the classifier δ = (1, 0) that

rewards all individuals, regardless of the signal.

Clearly this approach will not benefit D in equilibrium (i.e., taking into the fact that algorithm

will determine equilibrium prevalence), because this alternative classifier is a null classifier. As

discussed above, any such algorithm would induce all individuals with positive costs to not comply,
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so that equilibrium prevalence would drop to πF (δ, φ, r) =
1
2
, and D would receive an equilibrium

payoff equal to 1
2
.

Given our choice of r = 10 and φ = 0.75, D’s optimal classifier is

δ∗ = (1, 0.37).

This algorithm rewards all individuals who send a signal of si = 1, and rewards about 63% of all

individuals who send a signal of 0. This classifier incentivizes fewer individuals to comply than

if the designer simply followed the signal (97% versus nearly 100%), but it accurately classifies

almost 90% of the population.

Figure 1 displays the distribution of behaviors under a null classifer (left panel) and D’s optimal

algorithm (right panel), with the mass of compliers shaded gray.

0

Compliance under null classifier
0

Compliance under optimal classifier

Figure 1: Optimal Accuracy-Motivated Algorithm Induces Compliance

The point to take from this example is that in order to most accurately classify compliance, the

designer’s optimal classifier induces compliance. This may be good if we assume that aggregate

compliance is socially desirable. However, an accuracy-motivated designer need not induce this

kind of desirable outcome. To see this, consider the same setting as above with one change: the

mean of the distribution of the cost of compliance has shifted rightward, such that the costs of

compliance are distributed according to the Normal(1, 1) distribution. In this case, the optimal

classifier for an accuracy-motivated designer is δ1 = 0 and δ0 = 0.92: all individuals sending a

signal of 1 are penalized, and 92% of the individuals sending a signal of 0 are penalized. This

classifier disincentivizes compliance, with fewer individuals complying than under a null classifier

(8% versus 16%). It is highly accurate however, and again correctly classifies almost 90% of

individuals. Mirroring Figure 1, Figure 2 illustrates how the same accuracy-maximizing designer

will find it optimal in this case to effectively incentivize non-compliance.

3.4 Why is Accuracy Not Neutral?

The examples above demonstrate that a designer who is solely interested in accuracy may have

induced preferences over behavior. The reason for this stems from the effect of the algorithm on
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1

Compliance under null classifier
1

Compliance under optimal classifier

Figure 2: Optimal Accuracy-Motivated Algorithm Induces Non-Compliance

individual behavior. We often think of accuracy as being defined with respect to a fixed target.

However, the general definition of accuracy is agnostic about the nature of the target and, in this

setting (and all settings with algorithmic endogeneity, in which individuals care about how they

are classified), the location of “the target” for an accuracy maximizing designer may be a function

of the algorithm chosen by the designer. When this is the case (as it is in our setting), an accuracy-

maximizing designer has an incentive to design an algorithm that effectively makes the target

“easier to hit.” This second-order incentive leads an accuracy-maximizing designer to choose an

algorithm that can compensate for the inherent noisiness of the signal by inducing individuals to

behave in the same way. This is at odds with designer incentives in a setting in which the prevalence

is treated as exogenous to the details of the algorithm itself.

4 Democratic Rewards

So far, we have shown that the designer of a classification algorithm can exert considerable con-

trol over societal outcomes. As the previous sections demonstrated, this control is not only with

respect to how individuals are classified as deserving of a reward or penalty, but also with respect

to the behavior individuals optimally engage in. A designer seeking to maximize ticketing revenue

will induce very different aggregate societal behavior than a designer seeking to maximize public

safety, even when considering two populations that have the same underlying costs to compliance.

Moreover, Proposition 1 demonstrates that control of the size of the reward, r, would grant the

designer the essentially unfettered ability to achieve his or her preferred outcome for every indi-

vidual. Motivated by recent democratic reforms to change the stakes of algorithmic classification,

we now explore the outcomes and rewards each individual i ∈ N would most prefer for a given

algorithm, δ.

We consider a setting where rewards r are chosen by the community via a majority vote. We

assume, in line with the seminal model of a rational size of government by Meltzer and Richard

(1981), that the rewards must be financed equally (if r > 0) by, or the fines must be distributed

equally (if r < 0) back to, all individuals. Substantively, this is a budget balance requirement.
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However, the main reason to make this assumption is technical: if there is no budget constraint,

then all individuals would weakly prefer higher levels of rewards.12

We amend the payoff function for individuals given in Equation 2 to accommodate our balanced

budget constraint by requiring that each individual pay a tax equal to the average reward that

is awarded to individuals, r · d. This tax is equivalent to assuming that people receive reward

r · (1− d) if di = 1, and pay penalty −r · d if di = 0.

Additionally, we also add a term to the payoff function that allows individuals to have a taste

aggregate behavior. Letting π denote the prevalence of compliance in the population, we capture

this term by t · π, for t ≥ 0. Neither this term nor the tax r · d affect an individual’s decision

to comply, and so they do not change any of our results thus far. However, these terms do affect

preferences over optimal rewards and penalties.

Incorporating a taste for aggregate compliance into individuals’ payoffs allows us to consider

that individuals, as members of a common community, may share preferences over aggregate be-

havior. The marginal value of the (positive) externality generated by others’ choices to comply

(βj = 1) is represented by t ≥ 0. As t increases, all individuals value aggregate compliance more,

which can be conceived as an increased negative externality of non-compliance. Residents of a

dense urban community may, for example, value safe driving in the aggregate more than residents

of a rural community. We will see that as t increases, all individuals become more supportive of

subsidizing compliance. That said, individual tastes for this subsidy also depend on their private

costs to compliance. Consequently, even when t = 0 every individual will prefer a system of posi-

tive rewards and fines. Incorporating these terms into individuals’ payoffs, individual preferences

are now described by

r · (di − d)− βi · γi + t · π. (8)

We assume that the structure of the problem is common knowledge to all individuals (including

the designer).13 We analyze equilibrium behavior, and the starting point of this analysis is to

consider how each individual i should calculate his or her most-preferred reward level. Each

individual will realize that he or she will ultimately choose either to comply or not. Conditional

on each of these possible choices, the distribution of types, F , the algorithm, δ, and individual i’s

type, γi, i calculates his or her most-preferred reward in each of the two cases. This yields the

12This issue is discussed in Patty (2008) in the related context of how legislators might create incentives to maintain

party unity.
13This doesn’t preclude the possibility that individuals have privately observed types, but our analysis also clarifies

that, because we require the algorithm designer to use the algorithm to render individual decisions, it is not important

whether the designer is aware of any given individuals’ types, because the algorithm is not allowed to condition upon

this information.
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following conditional expected payoff function for any given individual i ∈ N :14

EUV (r|γi, δ, t, F, φ) =







−γi + r · ρ(δ, φ)(1− F (r · ρ(δ, φ))) + t · F (r · ρ(δ, φ)) if γi ≤ r · ρ(δ, φ),

−r · ρ(δ, φ)F (r · ρ(δ, φ)) + t · F (r · ρ(δ, φ)) otherwise.

(9)

The following proposition establishes that each individual’s maximization problem is well-

defined.

Proposition 5. If δ is not null, then conditional on behavior βi, voter payoffs are strictly quasi-

concave in rewards, r, and maximized at an interior r. If δ is null, each voter i is indifferent

between all reward levels.

The following corollary presents the two potentially optimal rewards for any individual i (one

conditional on i subsequently choosing to comply, and the other conditional on i subsequently

choosing to not comply).

Corollary 1. The optimal r∗1 and r∗0 (rewards for individuals choosing to comply and not comply

respectively) are of the form:

r∗βi
(δ | t, F, φ) =

k∗

j (t, F )

ρ(δ, φ)
∀βi ∈ {0, 1}, (10)

with the values k∗

0(t, F ) and k∗

1(t, F ) defined implicitly as follows:

k∗

0(t, F ) = t−
F (k∗

0(t, F ))

f(k∗

0(t, F ))
,

k∗

1(t, F ) = t +
1− F (k∗

1(t, F ))

f(k∗

1(t, F ))
.

Corollary 1 shows that, for any given δ, t, F , and φ, there are only two possible ideal rewards

— r∗0 or r∗1 — for any given individual i. Furthermore, these two possible ideal reward levels are

identical across all individuals. This is the combined result of the assumption of budget balance

and the assumption that all individuals have a common marginal preference for compliance by

others (t is common to all). That said, what is especially surprising about this is that individuals

are not homogeneous — they each know their own types.

Whenever the context is clear, we will omit the arguments of k∗

0 , k∗

1, r∗0, and r∗1. With the

optimal r∗i derived, it can be shown that a voter with costs γi receives an expected payoff from

r = r∗1 that is at least as great as from r = r∗0 if and only if

γi ≤ k0 · F (k0) + k1 · (1− F (k1)) + t · (F (k1)− F (k0)).

14Equation (9) is derived in Appendix B (Equations (20) and (21)).
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Because the optimal rewards, r∗1 and r∗0, are characterized by the terms k1 and k0, we define the

following term k∗

i , which we refer to as individual i’s “optimal k.”

k∗

i =







k1 if γi ≤ k0 · F (k0) + k1 · (1− F (k1)) + t · (F (k1)− F (k0)),

k0 otherwise.
(11)

The value k∗

i can be interpreted essentially as the optimal level of compliance, given i’s type,

γi, because F (k∗

i ) represents i’s optimal equilibrium prevalence. Individuals with k∗

i = k1 prefer

higher prevalence (in equilibrium, i.e., after taking transfers and the distribution of others’ costs

into account) than individuals with k∗

i = k0. We shall see that, in all equilibria with non-null

algorithms, some individuals will “vote for” high compliance but ultimately not comply, or vice-

versa. We will return to this, but the point to note is that this seeming preference reversal will be

solely a function of the individual in question being on the “losing side” of the majority vote over

the ultimate reward.

For any given pair (k∗

0, k
∗

1), Equation (11) defines a cut-point that divides individuals (in terms

of their types) into “low cost” and “high cost” individuals — individuals with low enough costs

will support the higher reward level, r∗1, and individuals with high costs will support the lower

reward level, r∗0. Equation (11) also demonstrates, as claimed earlier, that support for the higher

reward increases in the marginal value of the externality, t. This is stated formally in the following

proposition.

Proposition 6. For any t, F , and φ, and any voter i ∈ N ,

[

k∗

i (t, F ) = k∗

1(t, F ) and t′ > t

]

⇒ k∗

i (t
′, F ) = k∗

1(t
′, F ).

With the comparative statics of individual incentives established, we now turn to the question

of how rewards will be chosen democratically for any given classifier δ.

4.1 A Median Voter Theorem

Our first result is that there is always a Condorcet winner among rewards for any distribution of

types F , precision φ, and algorithm δ. Specifically, recalling that the individuals are indexed by

the unit interval, N = [0, 1], and ordered by their individual costs, i ≤ j ⇔ γi ≤ γj , individual

i = 0.5’s cost of complying, γ0.5, is equal to the median of the distribution of individual costs. We

denote this individual by µ, and the next proposition states that, for any classifier, δ, individual µ’s

ideal reward is a Condorcet winner among all possible reward levels.
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Proposition 7. For any classifier, δ, marginal value of compliance, t, distribution F , and precision

φ, the reward

r∗(δ | t, F, φ) =
k∗

µ(t, F )

ρ(δ, φ)
,

is a Condorcet winner: it is preferred by a majority of individuals to any other reward, r ∈ R.

The proof of Proposition 7 (in Appendix A) is straightforward, because Corollary 1 ensures that

there are only two ideal rewards for any non-null algorithm, and all voters are indifferent regarding

the reward level for any null classifier.

We can now describe some basic properties of outcomes when rewards are set democrati-

cally. Referring to the fraction of individuals complying when rewards are democratically set as

democratic compliance, the first result is a corollary of Proposition 7, but has far-reaching impli-

cations. Specifically, for any given F and φ, democratic compliance is insensitive to the design of

any non-null algorithm. In other words, the only aspect of the algorithm that can affect democratic

compliance in equilibrium is whether the algorithm is null or not.

Corollary 2. For any non-null classifier, democratic equilibrium compliance is equal to F (k∗

µ).

For any null classifier, equilibrium compliance (regardless of how r is set) is equal to F (0).

The next result strengthens Corollary 2 — it does not follow immediately from the corollary

because it is possible that voters could have strict preferences over different algorithms because of

the expected transfers that will occur in equilibrium. Proposition 8 clarifies that the invariance of

compliance with any non-null algorithm translates seamlessly into indifference over all non-null

algorithms. Furthermore, all voters are indifferent over all null algorithms.

Proposition 8. When rewards are chosen democratically, every voter is indifferent between all

non-null classifiers. Regardless of how rewards are chosen, every voter is indifferent between all

null classifiers.

Note that voters will, in general, have a strict preference between non-null and null algorithms.

The main impact of Proposition 8 for our purposes is that it clarifies that the voters’ induced

preferences over designers will depend entirely on whether the designer will result in a null or

non-null equilibrium.

Our final result concerning voter preferences over rewards gives us some insight into when

democratic rewards are comparatively high (set at r1, with the median complying) or compara-

tively low (set at r0, with the median not complying). If we suppose that the cost distribution F is

symmetric about its mean, then the median voter will prefer the higher reward — and correspond-

ingly, will comply in equilibrium — if his or her cost (i.e., γµ) is less than or equal to the marginal

value of the externality, t. The following proposition states this formally.
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Proposition 9. If f is log-concave and symmetric about its mean, then the median voter (i = µ)

receives a higher payoff at r∗1 than r∗0 if and only if γµ ≤ t.

Proposition 9 relies on the supposition that F is symmetric only in order to make the statement

as clean as possible — all voters’ preferences are continuous with respect to the distribution of the

voters’ types, so deviating from symmetry will not radically alter the proposition’s conclusion. We

now proceed to put the algorithm designer’s and voters’ problems together and consider a general

equilibrium model of algorithm design and democratic reward choices.

4.2 Democratic Algorithmic Equilibrium

Returning to the designer’s problem of designing an optimal classifier, Corollaries 1 and 2 simplify

our problem considerably, because when voters have a say in the system of rewards and punish-

ments a classifier metes out, the fraction of individuals choosing behavior βi = 1 is either F (0)

(a consequence of a null classifier, or a reward of r = 0, or both), or F (k∗

µ) in the event that

the classifier is non-null. We’ll simplify things by assuming throughout that D’s preferences are

accuracy aligned, or A1 ≥ A0 and that B1 ≥ B0. As noted earlier, this is a condition that all of

our vignettes satisfy and it enables us to pin down the concavity and convexity properties of the

designer’s objective function via Proposition 4.

We now consider a general equilibrium problem in which, in equilibrium, r∗ is chosen to

maximize the payoff of the median voter conditional on a choice of algorithm δ∗, and δ∗ maximizes

the payoff of the designer conditional on the median’s choice of r∗. First, recalling that γµ is the

median of the individuals’ costs of complying, we define our equilibrium concept as follows.

Definition 8. For any (t, F, φ, η), an algorithm-reward pair, (r∗, δ∗) is an equilibrium if both of

the following hold:

• r∗(δ∗ | t, F, φ) ∈ argmax
r∈R

EUV (r|γµ, δ
∗, t, F, φ), and

• δ∗(r∗ | F, φ, η) ∈ argmax
δ∈[0,1]×[0,1]

EUD(δ|r
∗, F, φ, η).

In words, the first of the two conditions in Definition 8 requires that, conditional on D’s choice

of algorithm, the reward is equal to the Condorcet winner among all rewards. The second condition

requires that, conditional on the median voter’s most-preferred reward, the algorithm designer is

choosing an optimal classifier given D’s preferences.
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4.2.1 Equilibrium Existence & Characterization

We denote the equilibrium classifier-reward correspondence, given t, F, φ, and D’s preferences,

η ≡ {A1, A0, B1, B0}, by E(t, F, φ, η). We begin by considering the existence of a “null” equilib-

rium in which r∗ = 0 and/or δ∗ is null.

Our first result is that a null equilibrium exists if and only if either (1) the median voter’s

preferred level of compliance is exactly equal to the level of sincere prevalence (F (0)) or (2)

sincere prevalence is sufficiently high or low.15 This is stated formally in the next proposition.

Proposition 10. When k∗

µ 6= 0, there always exists a null equilibrium when:

F (0) 6∈

(

(B1 − B0)(1− φ)

(B1 − B0)(1− φ) + (A1 − A0)φ
,

(B1 −B0)φ

(A1 − A0)(1− φ) + (B1 − B0)φ

)

.

Otherwise, there never exists a null equilibrium.

Proposition 10 leads immediately to the following two corollaries:

Corollary 3. If the designer’s preferences are of the form

η ∈ {{A1, 0, 0, 0}, {0, A0, 0, 0}, {0, 0, B1, 0}, {0, 0, 0, B0}}

then a null equilibrium always exists.

Corollary 3 implies that when the designer only places positive value on at most one cell of the

confusion matrix (such as in our vignette describing “predatory” designer preferences) then there

always exists a null equilibrium.

Corollary 4. If φ < 1 then there always exists a null equilibrium when F (0) is sufficiently low or

sufficiently high.

Corollary 4 is important because it demonstrates that an equilibrium exists for a large class of

relevant settings: those in which (virtually) every individual pays some positive cost to compliance.

Finally, Proposition 10 has another implication: null equilibria become less likely to exist as

φ → 1. Turning this around, Proposition 10 implies that the equilibrium — if one exists — is more

likely to involve a positively or negatively responsive algorithm as the algorithm’s “data” becomes

more precise.16

The next proposition characterizes all non-null equilibria.

15Generically, the median voter’s preferred level of compliance will differ from the sincere preference, so the second

case is the more important of the two.
16This is related to the point raised by Patty and Penn (2023d) regarding the social efficiency of at least a little

imprecision/noise in situations of algorithmic endogeneity.
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Proposition 11. In any non-null equilibrium, r∗ =
k∗µ

(δ∗
1
+δ∗

0
−1)(2φ−1)

and δ∗ is as follows:

• If k∗

µ(t, F ) > 0,

δ∗ =







(1, δ∗0(k
∗

µ, 1)) with δ∗0(k
∗

µ(t, F ), 1) 6= 0, or

(δ∗1(k
∗

µ(t, F ), 0), 0) with δ∗1(k
∗

µ(t, F ), 0) 6= 1

• If k∗

µ(t, F ) < 0,

δ∗ =







(0, δ∗0(k
∗

µ(t, F ), 0)) with δ∗0(k
∗

µ(t, F ), 0) 6= 1, or

(δ∗1(k
∗

µ(t, F ), 1), 1) with δ∗1(k
∗

µ(t, F ), 1) 6= 0.

Proposition 11 establishes that there are four types of non-null equilibria, but only two are

relevant in any particular setting (i.e., for any pair (F, φ)), depending on whether the median voter

wants to increase or decrease compliance relative to the sincere prevalence.17 In each case, there

may exist one equilibrium with a positively responsive algorithm and/or one equilibrium with a

negatively responsive algorithm. One important aspect of this result from a substantive standpoint

is that there cannot exist multiple non-null equilibria with algorithms that have the same form of

responsiveness.

Another important implication of Proposition 11 is that there may exist an equilibrium with a

negatively responsive algorithm even when the median voter wants to increase compliance (i.e.,

k∗

µ(t, F ) > 0) and, similarly, there may exist an equilibrium with a positively responsive algorithm

when the median voter wants to decrease compliance (i.e., k∗

µ(t, F ) < 0). This implies that the sign

of the reward in equilibrium might apparently contradict the median voter’s preference regarding

compliance. For example, it is possible for the equilibrium to involve negative rewards (r < 0)

even if the median voter wants to increase compliance above the level of sincere prevalence. Such

equilibria are admittedly strange — in this case, a negative reward would be in equilibrium only

when paired with a negatively response algorithm. This is due to the duality of the responsiveness

of the algorithm and the sign of the reward from the individuals’ standpoints when choosing their

behaviors, and is something we will discuss in a subsequent example.

Our final non-existence result focuses on the alignment between the designer’s preferences,

(A0, A1, B0, B1), and the median voter’s preferences about compliance (k∗

µ(t, F )).

Proposition 12. If k∗

µ(t, F ) > 0 then there does not exist a non-null equilibrium when A1 = B0,

or when B1 = B0 > A1 = A0. If k∗

µ(t, F ) < 0 then there does not exist a non-null equilibrium

when A0 = B1, or when A1 = A0 > B1 = B0.

17If the median voter does not want to change compliance from the sincere prevalence, then Proposition 10 implies

that there is an equilibrium with either r∗ = 0 or a null classifier (or both).
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Proposition 12 characterizes some scenarios in which the preferences of the median voter and

the algorithm designer are directly opposed, in terms of the prevalence of qualification. At a

non-null equilibrium the median’s preference can be characterized by whether k∗

µ(t, F ) > 0 or

k∗

µ(t, F ) < 0: whether the median prefers to induce greater compliance than would attain in the

absence of a reward-based classifier (i.e., F (0)), or whether to induce less compliance. When

A1 = A0 = A and when B1 = B0 = B then the designer’s preference is also fully characterized

by whether he wants more or less compliance (when A > B he wants more, and when B > A he

wants less). Consequently, when k∗

µ(t, F ) > 0 but B > A then the median voter and the designer

have opposed preferences, with the median choosing an r to bolster compliance and D choosing

a classifier to reduce compliance. As in the game of matching pennies, there is no pure strategy

equilibrium. We’re left with only the possibility of a null equilibrium which, unfortunately, may

also fail to exist, as discussed in the next remark.

Remark 2. A (pure strategy) equilibrium may not exist in our framework for two reasons. The first

is surmountable, and stems from the fact that the set of rewards is not bounded. However, even

if we bound the rewards the best response correspondence for the designer may not be convex-

valued, and this can lead to equilibrium non-existence. Suppose that the designer highly values

aggregate non-compliance, while the voters highly value aggregate compliance (setting t high). We

can construct an example in which no non-null equilibrium is possible. As in a game of matching

pennies, if r > 0 then D will choose a negatively responsive algorithm, which will induce the

voters to choose r < 0, which will induce D to choose a positively responsive algorithm, which

will induce the voters to choose r > 0. At the same time, a null equilibrium will not be possible for

certain values of F (0), as characterized in Proposition 10. This said, all examples derived in the

article (even those that don’t correspond to an existence result) are indeed equilibria!

4.3 Social Welfare

In addition to considering democratically-chosen rewards and penalties, it is natural to think about

the social welfare-maximizing system of rewards and penalties. Given our assumption that indi-

viduals have linear preferences over rewards and the imposition of budget balance, all wins and

losses from classification are canceled out when considering Benthamite social welfare. Social

welfare is calculated as the following:

SW (r) = tF (r · ρ(δ, φ))−

∫ r·ρ(δ,φ)

−∞

γdF (γ).

The following proposition neatly characterizes the social welfare optimizing reward level, given

any non-null classifier δ and precision φ.18

18When the classifier is null, all rewards are equivalent from a social welfare standpoint.
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Proposition 13. For any precision φ ∈
(

1
2
, 1
]

and non-null classifier δ, the social welfare maxi-

mizing reward, r∗SW (δ, φ) is defined by:

r∗SW (δ, φ) =
t

ρ(δ, φ)
. (12)

Proposition 13 implies that, while democratically-chosen rewards are a function of the overall

distribution of costs, F , social welfare-maximizing rewards are not. Finally, we note the following

corollary of Proposition 13 and Corollary 1:

Corollary 5. For any precision φ ∈
(

1
2
, 1
]

and classifier δ, the social welfare maximizing reward,

r∗SW (δ, φ), is strictly between the optimal individual rewards conditional on non-compliance and

compliance (r∗o and r∗1, respectively):

r∗0 < r∗SW < r∗1.

Consequently, democratically chosen rewards are always inconsistent with social welfare max-

imization, being either lower or higher than socially optimal. This is in line with many other mod-

els of democratic choice (including Meltzer and Richard (1981), upon which many such models

are based).

4.4 An Aside on Voter Preferences and Virtual Values

The interested reader may note that the expressions for k1 and k0 presented in Corollary 1 bear a

resemblance to virtual valuations in Bayesian mechanism design. This is not a coincidence, and

in this section we briefly lay out the relationship between virtual values and optimal rewards, from

the voter’s perspective. First, note that the expected “profit” to choosing βi = 1 over βi = 0 is

represented by r · ρ(δ, φ), and the cost of this choice is γi.

A voter who has chosen βi = 1 over βi = 0 faces an objective function given in Equation 20:

−γi + r · ρ(δ, φ)(1− F (r · ρ(δ, φ))) + tF (r · ρ(δ, φ)).

The middle term r · ρ(δ, φ)(1 − F (r · ρ(δ, φ))) is identical to the objective of a profit-maximizing

mechanism designer (e.g. a firm) who faces a buyer with value for a good that is distributed

according to F . The designer seeks to set a price r · ρ(δ, φ) to maximize expected revenue, which

of course is r · ρ(δ, φ) times the probability the buyer’s valuation for the good exceeds its price,

or 1 − F (r · ρ(δ, φ)). In our setting, the compliant voter seeks to maximize the expected payoff a

compliant type will receive conditional on budget balance. This payoff is increasing in r · ρ(δ, φ),

but decreasing in F (r · ρ(δ, φ)), or the set of compliant individuals expected to receive the payoff.

When t = 0, the solution to the compliant voter’s problem sets

r · ρ(δ, φ)−
1− F (r · ρ(δ, φ))

f(r · ρ(δ, φ))
= 0,
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which is precisely the condition of choosing r · ρ(δ, φ) to set the virtual value of a voter with costs

γ distributed F (γ) equal to zero.

Conversely, a voter who has chosen βi = 0 over βi = 1 faces an objective function given in

Equation 21, which we can reduce to

−r · ρ(δ, φ)(F (r · ρ(δ, φ))) + tF (r · ρ(δ, φ)).

In this case, −r · ρ(δ, φ) represents the expected profit to choosing βi = 0 over βi = 1. When

t = 0 the non-compliant voter simply seeks to maximize the expected payoff a non-compliant type

will receive conditional on budget balance, or −r · ρ(δ, φ)(F (r · ρ(δ, φ))). This term is increasing

in −r · ρ(δ, φ) and increasing in F (r · ρ(δ, φ)), the fraction of compliant types. In this case, with

t = 0, the non-compliant voter optimally sets

r · ρ(δ, φ) +
F (r · ρ(δ, φ))

f(r · ρ(δ, φ))
= 0.

4.5 Returning to accuracy minimization

We now return to the example of accuracy minimization that we considered in Section 3.3. This

example sets precision φ = 3
4

and considers two different distributions of costs. We’ll first let γ

be distributed N [0, 1], and then we will let γ be distributed N [1, 1]. In both cases we’ll set the

externality of compliance at t = 0.5. Note that we don’t pin down r because it is now chosen

endogenously.

When costs are distributed N [0, 1] the median voter prefers k1 to k0, setting k∗

µ(t, F ) = 1.12.

Consequently, a non-null classifier will yield a prevalence of F (k∗

µ(t, F )) = 87%, whereas a null

classifier will yield a prevalence of F (0) = 50%. There is a unique, non-null, equilibrium:

Accuracy

δ∗1 δ∗0 Reward Prevalence, π Welfare Median Payoff Designer Payoff

1 0.67 3.14 87% 0.65 0.81 0.79

We’ll now change our example to shift the mean of the cost distribution to µ = 1, keeping all

else equal. With these higher costs the median voter prefers k0 to k1, setting k∗

µ(t, F ) = −0.12

to disincentivize compliance. A non-null classifier will yield a prevalence of F (k∗

µ(t, F )) = 13%,

whereas a null classifier will yield a prevalence of F (0) = 16%. There are now three equilibria:

Accuracy

δ∗1 δ∗0 Reward Prevalence, πF Welfare Median Payoff Designer Payoff

0 0.96 6.02 13% 0.15 0.16 0.844

0.18 1 -1.34 13% 0.15 0.16 0.85

0 1 0 16% 0.16 0.08 0.841
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This example highlights situations in which there are a multiplicity of equilibria, and why.

There are always a total of two possible non-null equilibria: one corresponding to δ1 ∈ {0, 1} and

r > 0 and one corresponding to δ0 ∈ {0, 1} and r < 0. In this particular example, k∗

µ(t, F ) < 0 as

the median wants to negatively induce compliance. Therefore, if r∗ > 0 then it must be that δ1 = 0

and if r∗ < 0 it must be that δ0 = 1. We have two local optima corresponding to these points, and

we can check that they are global optima by checking to ensure that D doesn’t receive a higher

payoff with a null classifier, or at a different local optimum that is not a possible equilibrium,

because it is not consistent with the median’s optimal choice of r∗. In this example, both potential

local optima are global optima. Moreover, there is also a null equilibrium, because at r∗ = 0 it is

optimal for D to choose a null classifier.

We’ll finish by briefly discussing the two non-null equilibria: δ∗ = (0, 0.96), r∗ = 6.02, and

δ∗ = (0.18, 1), r∗ = −1.34. In both cases, individuals are being negatively incentivized to com-

ply, but through different mechanisms. In the former, the reward to being classified as a “1” is

positive, but the designer is more likely to give this reward to individuals sending a signal of non-

compliance, si = 0. In the latter, the designer is more likely to reward individuals sending a signal

of compliance, but the reward is negative—the “reward” is actually a penalty.

4.6 Inefficient democratic choice

We conclude with an example showing that democratizing the system of rewards and penalties can

sometimes produce pathological outcomes. In particular, there may exist an exogenously fixed

reward and penalty scheme that leaves the designer and the median voter strictly better off than

they are at the democratically chosen (equilibrium) system of rewards and penalties. Moreover,

this exogenous system of rewards and penalties also improves aggregate social welfare relative to

the equilibrium system of rewards and penalties. This Pareto improvement for the designer and

median voter can occur if (and only if) there exists no non-null equilibrium. This is because the

median is attaining her highest possible payoff at any non-null equilibrium.

Suppose that costs to compliance, γ, are distributed N [1, 1], that accuracy φ = 3
4
, and that the

externality of compliance is set at t = 1.25. In this case the median voter’s costs are less than

t, and her ideal reward induces an aggregate level of compliance equal to F (k1). As k1 = 1.93,

equilibrium compliance at a non-null equilibrium is 0.82, and for any non-null classifier, rewards

are democratically set at:

r =
1.93

(δ1 + δ0 − 1)(.5)
.

For any null classifier, equilibrium compliance is F (0) = 0.16.

Now suppose that the designer has payoffs as represented in the following confusion matrix:
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Decision

Compliance di = 1 di = 0

βi = 1
A1 = 1 A0 = 0

(True Positive) (False Negative)

βi = 0
B0 = 0 B1 =

9
10

(False Positive) (True Negative)

The designer is accuracy-motivated, but receives a slightly higher payoff for true positives (re-

warded compliers) than true negatives (penalized non-compliers). In this case, the classifier (δ1, δ0) =

(1, 0.9) induces a (democratically-chosen) reward of r = 4.24. When r = 4.24 then (δ1, δ0) =

(1, 0.9) is also a local maximum of the designer’s payoff function, yielding the designer an ex-

pected payoff of 0.74. However, it is not a global maximum of the designer’s payoff function. If

the designer chooses a null classifier of (δ1, δ0) = (0, 1) (classifying each individual as a d1 = 0)

he can attain a payoff of 0.84 ∗ 0.9 = 0.757, or B1 times the fraction of non-compliers. Conse-

quently, the unique equilibrium is null, with (δ∗1, δ
∗

0) = (0, 1) and r∗ = 0. The median receives a

payoff of t ∗ F (0) = 0.2, and aggregate social welfare is

t · F (0)−

∫ 0

−∞

γdF (γ) = 0.28.

Now suppose that r is increased to r = 5. In this case, the designer’s optimal classifier is (δ1, δ0) =

(1, 0.84), yielding the designer a slightly higher expected payoff than what he would attain at a null

classifier (0.76 versus 0.757). This classifier and reward yield a compliance rate of πF = 86%. The

median voter now receives an expected payoff of

t · πF (δ, φ, r)− γµ + r · ρ(δ, φ)(1− πF ) = 0.37,

and aggregate social welfare is

t · πF (δ, φ, r)−

∫ rρ(δ,φ)

−∞

γ dF (γ) = 0.43.

The table below summarizes the comparison between outcomes in equilibrium versus outcomes

when rewards and penalties are no longer endogenously chosen.

Equilibrium outcomes

r (δ1, δ0) Designer payoff Median payoff Social Welfare Compliance

0 (0, 1) 0.757 0.2 0.28 16%
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Outcomes when rewards are exogenous

r (δ1, δ0) Designer payoff Median payoff Social Welfare Compliance

5 (1, 0.84) 0.76 0.37 0.43 86%

The logic behind that example is that the median voter most prefers a level of compliance equal

to 82%. For any non-null classifier she will design a system of rewards to bring compliance to

this level. However, this level of compliance is too low for it to be profitable to the (accuracy-

motivated) designer to use a non-null classifier. When the designer uses a null classifier he is

able to (correctly) classify 84% of the population as non-compliant. However, by fixing a reward

that is higher than the median prefers, the designer is induced to mobilize greater compliance—

higher than that demanded by the median. This benefits the designer, because he prefers correctly

classifying compliers to correctly classifying non-compliers. It also benefits the median voter and

it improves aggregate social welfare, due to the positive externalities associated with compliance.

5 Conclusion

Classification algorithms often do more sort than simply categorize people — they also often

change peoples’ behaviors. Indeed, such behavioral changes are sometimes an explicit goal of

the algorithm, just as crime prediction algorithms may be designed to deter crime. However, re-

gardless of whether behavioral changes are the goal of algorithm designer, individuals’ preferences

over how they are classified by an algorithm may induce these individuals to change their behav-

iors. When an algorithm affects the behaviors of the individuals to whom the algorithm is applied,

the result is algorithmic endogeneity.

Such endogeneity accentuates the importance of the goals of the algorithm designer. To see this,

consider two similar cities, X and Y , designing a “ticketing algorithm” that chooses which drivers

to penalize for unsafe driving. Suppose that city X’s algorithm has been designed to maximize

ticket revenue, while city Y ’s algorithm was designed to maximize public safety. Even though each

city is using an algorithm aimed at managing unsafe driving behavior, the two algorithms might

in general make very different classification decisions and, as a result of algorithmic endogeneity,

driving behaviors, revenues, and/or public safety might vary widely between the two otherwise

similar cities.

Accordingly, our theory provides another view on structural inequality, emanating from the

incentives of those who design the algorithms applied to individuals. This is one reason that the

stakes of algorithmic classification — housing eligibility, pretrial release, educational opportu-

nities, to name a few — have been increasingly subject to scrutiny and reform. These ongoing

debates might at first appear to be about the nature of the algorithms and/or the data on which they
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are “trained,” but the analysis above indicates that, from a social science standpoint, the policy im-

plications of these algorithms must ultimately focus on the decisions that the algorithm in question

is used to make.

Our Argument. In the analysis above, we first characterized the optimal classification algorithm

for any given algorithm designer’s preferences over both how people behave and how they are clas-

sified, holding the rewards and penalties individuals experience from classification fixed. We then

show that even seemingly “neutral” goals such as accuracy maximization can produce much less

benign outcomes in the presence of algorithmic endogeneity. Indeed, as the stakes of algorithmic

classification become sufficiently strong, any algorithm designer can induce essentially everyone

to engage in any given behavior and also be classified in any fashion the designer wants.

The next step of our analysis above — motivated by recent reforms intending to democratize

the stakes of classification — characterizes what classification algorithms will look like in equi-

librium when the algorithm’s stakes are subject to democratic control, subject to a budget balance

condition. The analysis shows that, for any non-null classifier, equilibrium classification algo-

rithms induce a fixed level of behavioral compliance. This level of compliance is optimal for the

median voter, but also socially inefficient. In addition, the median vter’s ability to set the stakes so

as to maintain a given level of compliance in the population dramatically limits the algorithm de-

signer’s ability to shape behavior in the population as a whole. In the end, the algorithm designer is

essentially faced with a choice between either designing a non-null classification algorithm that in-

duces the median voter’s ideal level of compliance, or a “null” algorithm that classifies individuals

randomly.

And, in some cases, the equilibrium algorithm is random: when the preferences of voters and

the designer are sufficiently opposed with respect to optimal aggregate behavior, the equilibrium

algorithm must be random in the sense of being a null classifier. From a substantive standpoint,

such null classifiers are effectively “defunded algorithms” because they have no impact on indi-

vidual incentives. In line with recent discussions about reducing the stakes of classification algo-

rithms, these nnull algorithms emerge precisely in settings in which the median voter and algorithm

designer have a fundamental disagreement over how social behavior should be structured.

Future Directions. There are many ways to expand the framework presented in this article. In

addition to considering richer settings (i.e., larger sets of behaviors and/or decisions, different infor-

mational structures, different individual preferences), an important question raised by the analysis

is how to judge the fairness of equilibrium algorithms. The analysis above illustrates that demo-

cratically chosen stakes to classification are socially inefficient, suggesting immediately that the

equilibrium algorithm is always suspect from a welfare-based fairness perspective.
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However, this merely scratches the surface of bigger questions about algorithmic fairness. For

example, if the population is divided into two or more groups, it is known that any algorithm

is “generically unfair” from a statistical parity sense (e.g., Kleinberg, Mullainathan and Raghavan

(2016), Chouldechova (2017)). The analysis above demonstrates that any statistical imbalance

might be leveraged by the median voter when choosing the algorithm’s stakes. And, even setting

democratic choice to the side, the fact that the algorithm will shape individual incentives and

produce algorithmic endogeneity both raises questions about the proper definition of fairness in

such situations and, indeed, opens some angles with respect to how to evaluate existing statistical

notions of fairness.19

19Some of these issues are addressed in Patty and Penn (2023b).
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6 Appendix

6.1 Equilibrium characterization

These are the (potentially interior) solutions for δ∗0 and δ∗1 for our general equilibrium. They are

each defined in terms of the functions ∆1(k, δ0) and ∆0(k, δ1), where ∆i(k, δj) solves

∂

∂δi
EUD(δi, δj) = 0.

Consequently, holding δj and k fixed, ∆i(k, δj) is the (unique) critical point of the designer’s payoff

function in δi.

δ∗0(k, δ1) =



















0 if ∆0(k, δ1) < 0

∆0(k, δ1) if 0 ≤ ∆0(k, δ1) ≤ 1

1 if ∆0(k, δ1) > 1,

and

δ∗1(k, δ0) =



















0 if ∆1(k, δ0) < 0

∆1(k, δ0) if 0 ≤ ∆1(k, δ0) ≤ 1

1 if ∆1(k, δ0) > 1,

with

∆0(k, δ1) =
kf(k)((1− δ1)φ(−A0 + A1 +B0 − B1)−A1 + δ1(B0 − B1) +B1)

(1− φ)(A0 −A1) (kf(k) + F (k)) + φ(B1 − B0) (1− kf(k)− F (k))

+
(1− δ1)((1− φ)(A0 − A1)F (k) + φ(B1 −B0)(1− F (k)))

(1− φ)(A0 −A1) (kf(k) + F (k)) + φ(B1 − B0) (1− kf(k)− F (k))

∆1(k, δ0) =
kf(k)((1− δ0)φ(−A0 + A1 +B0 − B1) + δ0(A1 −A0)− A1 +B1)

φ(A1 − A0) (kf(k) + F (k)) + (1− φ)(B0 − B1) (1− kf(k)− F (k))

+
(1− δ0)(φ(A1 −A0)F (k) + (1− φ)(B0 −B1)(1− F (k)))

φ(A1 − A0) (kf(k) + F (k)) + (1− φ)(B0 − B1) (1− kf(k)− F (k))
.
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A Proofs

Proposition 1 As r → ∞ the designer can attain an expected payoff of max({A1, A0, B1, B0}).

This is his highest possible payoff.

Proof. First note that, as r → ∞, prevalence πF (δ, φ, r) → 1 if δ1 + δ0 > 1 and prevalence

πF (δ, φ, r) → 0 if δ1 + δ0 < 1, by Equations 4 and 5. (When δ1 + δ0 = 1 our classifier is null, and

πF = F (0).)

The fraction of individuals classified into each cell of the designer’s payoff matrix is a function

of πF , φ, and δ = (δ1, δ0), with:

%A1 = π(φδ1 + (1− φ)(1− δ0))

%A0 = π(φ(1− δ1) + (1− φ)δ0)

%B1 = (1− π)(φδ0 + (1− φ)(1− δ1))

%B0 = (1− π)(φ(1− δ0) + (1− φ)δ1).

For ǫ small and positive, consider the classifiers δA1
= (1, ǫ), δA0

= (ǫ, 1), δB1
= (0, 1 − ǫ),

and δB0
= (1 − ǫ, 0). Classifiers δA1

and δA0
induce a prevalence near 1 when r is high, and

classifiers δB1
and δB0

induce a prevalence near 0. Evaluating the above four equations at these

respective classifiers, we can see that as r → ∞, classifier δC induces a %C = 1, for C ∈

{A1, A0, B1, B0}.

Proposition 2 If the designer’s preferences η satisfy A1 = A0 = Ā ≥ 0 and B1 = B0 = B̄ ≥ 0,

then the optimal algorithm for any r > 0 is

δ∗(r, F, φ, η) =







(1, 1) if r · (Ā− B̄) > 0,

(0, 0) if r · (Ā− B̄) < 0.

Proof. Fixing φ ∈ (1/2, 1] and r > 0, noting that A1 = A0 > 0 by hypothesis, and normalizing

B1 = B0 = 0, Equation (6) can be rewritten as

EUD(δ | r, F, φ, η) = πF (δ, φ, r) · A0.

Because A0 > 0 and πF (δ) is maximized by δ = (1, 1) if r > 0, it follows that r > 0 implies that

EUD(δ) is maximized by δ = (1, 1), as claimed. A similar argument proves the case of r < 0.

Proposition 3 When r 6= 0, any optimal classification strategy for D requires either δ∗1 ∈ {0, 1},

or δ∗0 ∈ {0, 1}, or both.
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Proof. The determinant of the Hessian of D’s objective function (a function of δ1 and δ0) is:

∣

∣

∣

∣

H(EUD(δ1, δ0 | r, F, φ, η))

∣

∣

∣

∣

= −(A0 − A1 +B0 − B1)
2 · r2 · (1− 2φ)2 · F ′(ρ(δ, φ))2.

This is strictly negative if φ > 0 and A1+B1 6= A0+B0 whenever F ′(r (δ1 + δ0 − 1) (2φ−1)) > 0,

which is implied by Assumption 1. Consequently, δ∗1, δ
∗

0 are not both interior when A1 + B1 6=

A0 +B0. If A1 +B1 = A0 +B0 then:

∂EUD

∂δ1
= (B0−B1)(1−φ+(2φ−1)F (r·ρ(δ, φ)))+r(2φ−1)f(r·ρ(δ, φ))(A0−B1+(B0−B1)ρ(δ, φ)),

∂EUD

∂δ0
= (B0−B1)(−φ+(2φ−1)F (r·ρ(δ, φ)))+r(2φ−1)f(r·ρ(δ, φ))(A0−B1+(B0−B1)ρ(δ, φ)).

Any critical point in (δ1, δ0) would set the above expressions equal to zero, and consequently

require that 1 − φ = −φ, which is impossible. Consequently, when A1 + B1 = A0 + B0, D’s

payoff has no interior critical point.

A Note on Log-Concavity. Much of our analysis utilizes the log-concavity of the PDF f . First,

log-concavity of f implies that its CDF, F is also log-concave. This implies that at any γ ∈ R,

it is the case that f(γ)2 ≥ F (γ) · f ′(γ). Moreover, if density f is log-concave then its survival

function, 1− F is also log-concave.20 This leads to the following observation:

Observation 1. When PDF f is log-concave then for any γ ∈ R it is the case that

f(γ)2 ≥ −f ′(γ)(1− F (γ)).

Proposition 4 When [A1 ≥ A0&B1 ≥ B0] with one inequality strict, or when [A1 ≤ A0&B1 ≤

B0] with one inequality strict then D’s payoff is strictly quasiconcave in δj and strictly quasiconvex

in δk, for j 6= k.

Proof. Our proof proceeds by considering the concavity and convexity properties of any critical

points of the designer’s objective function. Taking the partial derivatives of the designer’s objective

function (Equation 6) with respect to δ0 and δ1, any critical point that is interior for either δ1 or δ0

(which we will term δc1 and δc0) must, respectively, solve:

20Bagnoli & Bergstrom, “Log-concave probability and its applications,” Economic Theory 26(2), 2005.
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δc1 =
(B1 −B0)(1 − F1 − φ) +F1φ(A0 −A1 − B0 + B1)− f1r(2φ− 1)(A1 − B1 + δ0(A0 − A1) + φ(1− δ0)(A0 −A1 − B0 + B1))

f1r(2φ− 1)(B1 −B0 − φ(A0 −A1 + B1 −B0))
,

δc0 =
(B0 −B1)φ(1 − F0) +F0(1− φ)(A1 −A0) + f0(2φ− 1)r(B1 − A1 + δ1(B0 − B1) + φ(1− δ1)(A1 − A0 + B0 − B1))

f0r(2φ− 1)(A0 − A1 + φ(A1 −A0 +B0 −B1))
.

The terms F1,F0, f1, f0 are functions of δ1, δ0, with F1 = F (r · ρ((δc1, δ0), φ)), F0 = F (r ·

ρ((δ1, δ
c
0), φ)), f1 = f(r · ρ((δ1, δ

c
0), φ)), and f0 = f(r · ρ((δ1, δ

c
0), φ)).

We can now classify the second order behavior of the designer’s objective function at the critical

points δc1 and δc0 (holding δ0 and δ1 fixed, respectively). The second derivatives with respect to δ1

and δ0, evaluated at δc1 and δc0, are:

∂2EUD(δ1, δ0)

∂δ2
1

∣

∣

∣

δ1=δc
1

=
r(2φ− 1)

(

φ(A1 −A0)(2f1
2 − F1f1

′) + (B1 −B0)(1 − φ)(2f1
2 + f1

′ − F1f1
′)
)

f1
,

(13)

∂2EUD(δ1, δ0)

∂δ2
0

∣

∣

∣

δ0=δc
0

= −
r(2φ− 1)

(

(1− φ)(A1 −A0)
(

2f0
2 − F0f0

′
)

+ φ(B1 −B0)
(

2f0
2 + f0

′ − F0f0
′
))

f0
.

(14)

By the full support and log-concavity of f , the terms (2fj
2 −Fjfj

′) and (2fj
2 + fj

′ −Fjfj
′) are both

strictly positive (note that if fj
′ < 0 then this conclusion holds via Observation 1). Consequently,

when the values of A1, A0, B1, B0 allow us to unambiguously sign Equations 13 and 14 we can

draw conclusions about the strict quasiconcavity of D’s objective function in δ1 and δ0. If, for

example, Equation 13 is always strictly positive, then holding δ0 constant, any critical point in

δ1 must be a local minimum. Consequently, D’s objective function must be strictly quasiconvex

in δ1 for any δ0, and therefore maximized at a corner solution δ∗1 ∈ {0, 1}. This leads to a few

conclusions:

• If r > 0 and A1 ≥ A0 and B1 ≥ B0 with one inequality strict, or if r < 0 and A1 ≤ A0 and

B1 ≤ B0 with one inequality strict, then δ∗1 ∈ {0, 1} and δ∗0 may be interior.

• If r < 0 and A1 ≥ A0 and B1 ≥ B0 with one inequality strict, or if r > 0 and A1 ≤ A0 and

B1 ≤ B0 with one inequality strict, then δ∗0 ∈ {0, 1} and δ∗1 may be interior.

Proposition 5 If δ is not null, then conditional on behavior βi, voter payoffs are strictly quasi-

concave in rewards, r, and maximized at an interior r. If δ is null, each voter i is indifferent

between all reward levels.
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Proof. First, note that if δ1 + δ0 = 1 then the classifier is null, and classifies individuals indepen-

dently of their signal. In this case, voter expected payoffs are flat in r, as each individual receives

the reward with the same probability and pays a tax equal to this expected reward.

Now suppose that δ1 + δ0 6= 1. Any critical points of Equations 20 and 21 (we term them rc1 and

rc0, respectively) must satisfy the following first-order conditions:

rc1 =
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))
, (15)

and

rc0 =
−F (rc0 · ρ(δ, φ)) + tf(rc0 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc0 · ρ(δ, φ))
. (16)

Evaluating the second-order conditions of Equations 20 and 21 at these points, we get:

∂2UV (r)

∂r2

∣

∣

∣

r=rc
1

= −
1

f(rc1 · ρ(δ, φ))
(δ0+δ1−1)2(2φ−1)2(2f(rc1·ρ(δ, φ))

2+f ′(rc1·ρ(δ, φ))(1−F (rc1·ρ(δ, φ)))),

and

∂2UV (r)

∂r2

∣

∣

∣

r=rc
0

= −
1

f(rc0 · ρ(δ, φ))
(δ0+δ1−1)2(2φ−1)2(2f(rc0·ρ(δ, φ))

2−f ′(rc0·ρ(δ, φ))F (rc0·ρ(δ, φ))).

Again, by the strict log-concavity of the PDF of the cost distribution f , both these terms are strictly

negative when δ1 + δ0 6= 1. Consequently, any critical point must be a local maximum. There is

therefore at most one critical point, and it is a global maximum.

We now show that there exists a critical point for each of the above payoff functions. We will use

the intermediate value theorem to show that both Equations 15 and 16 have roots.

We’ll consider Equation 15 first, and begin by assuming that δ0+δ1 > 1. When this latter condition

holds then
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))
> 0.

Consequently, when rc1 ≤ 0 then

rc1 −
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))
< 0.
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As we drive rc1 to infinity we get

lim
r1→∞

rc1 −
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))

= lim
r1→∞

rc1 −
t

(δ1 + δ0 − 1)(2φ− 1)
−

1

(δ1 + δ0 − 1)(2φ− 1)
lim

rc
1
→∞

(1− F (rc1 · ρ(δ, φ)))

f(rc1 · ρ(δ, φ))
. (17)

To prove that Equation 17 is positive, it suffices to show that the term
(1−F (rc

1
·ρ(δ,φ)))

f(rc
1
·ρ(δ,φ))

does not

approach ∞ as rc1 → ∞. As noted in Observation 1, log-concavity of f implies log-concavity of

its survival function 1− F . Therefore log(1− F ) is a concave function.

d

dγ
log(1− F (γ)) = −

f(γ)

1 − F (γ)

must consequently be decreasing, which implies that
1−F (γ)
f(γ)

is also decreasing. As
1−F (γ)
f(γ)

is de-

creasing and bounded below by 0, it must converge to a limit as rc1 → ∞. Consequently, by the

intermediate value theorem, when δ1 + δ0 > 1 Equation 15 has a root.

Now consider Equation 15 assuming that δ0 + δ1 < 1. In this case, when rc1 > 0 then

rc1 −
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))
) > 0.

By a similar argument as above,

lim
rc
1
→−∞

rc1 −
1− F (rc1 · ρ(δ, φ)) + tf(rc1 · ρ(δ, φ))

(δ1 + δ0 − 1)(2φ− 1)f(rc1 · ρ(δ, φ))
) < 0

by the the fact that −1−F (γ)
f(γ)

is increasing and bounded above by 0. Again, by the intermediate

value theorem, when δ1 + δ0 < 1 Equation 15 has a root. A similar argument proves that Equation

16 has a root when δ1 + δ0 6= 1. Consequently, conditional on behavior βi, the voter’s objective

function has a unique and interior maximizer.

Proposition 6 For any t, F , and φ, and any voter i ∈ N ,

[

k∗

i (t, F ) = k∗

1(t, F ) and t′ > t

]

⇒ k∗

i (t
′, F ) = k∗

1(t
′, F ).

Proof. By Equation 11, k∗

i = k1 if and only if γi ≤ k0 ·F (k0)+k1 ·(1−F (k1))+t·(F (k1)−F (k0)).

We will show that the term

k0 · F (k0) + k1 · (1− F (k1)) + t · (F (k1)− F (k0)) (18)

is increasing in t.
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Substituting the expressions for k1 and k0 into (18), we can restate our problem as needing to show

that

t+
(1− F (k1))

2

f(k1)
−

F (k0)
2

f(k0)
(19)

is increasing in t (and moreover, it is strictly increasing in t). Using the fact that t+ (1−F (k1))
f(k1)

−k1 =

0 and t− (F (k0))
f(k0)

− k0 = 0, we can implicitly differentiate k1 and k0 with respect to t to yield:

k′

1(t) = f(k1)2

2f(k1)2+(1−F (k1))f ′(k1)
, and

k′

0(t) = f(k0)2

2f(k0)2−F (k0)f ′(k0)
.

Finally, differentiating (19) with respect to t and substituting the above solutions for d
dt
k1 and d

dt
k0

into the expression, we get that

d

dt

(

t +
(1− F (k1))

2

f(k1)
−

F (k0)
2

f(k0)

)

= F (k1)− F (k0).

As k1 > k0, this expression is positive, showing that (19) is strictly increasing in t.

B Derivations

B.1 The Voter’s Expected Payoffs

The conditional expected payoff function for individual i in (9) is derived from the following two

conditional expected payoffs conditional on i’s subsequent behavioral choice, βi:

EUV (βi = 1 | r, γi, δ, t, F, φ)

= tF (r · ρ(δ, φ)) + r(φδ1 + (1− φ)(1− δ0))− γi

−r
(

F (r · ρ(δ, φ))(φδ1 + (1− φ)(1 − δ0)) + (1− F (r · ρ(δ, φ)))(φ(1 − δ0) + (1 − φ)δ1)
)

= −γi + r · ρ(δ, φ)(1 − F (r · ρ(δ, φ))) + t · F (r · ρ(δ, φ)), (20)

EUV (βi = 0 | r, γi, δ, t, F, φ)

= tF (r · ρ(δ, φ)) + r(φ(1− δ0) + (1− φ)δ1)

−r
(

F (r · ρ(δ, φ))(φδ1 + (1− φ)(1 − δ0)) + (1− F (r · ρ(δ, φ)))(φ(1 − δ0) + (1 − φ)δ1)
)

= −r · ρ(δ, φ)F (r · ρ(δ, φ)) + t · F (r · ρ(δ, φ)). (21)
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Proposition 9 If f is log-concave and symmetric about its mean, then the median voter (i = µ)

receives a higher payoff at r∗1 than r∗0 if and only if γµ ≤ t.

Proof. When f is symmetric about mean µ, then if t = µ, k1 and k0 are symmetric about µ. To

see this, let k1 and k0 be defined as in Corollary 1. If k1 solves

k1 = µ+
1− F (k1)

f(k1)

then 2µ− k1 must solve

2µ− k1 = µ−
F (2µ− k1)

f(2µ− k1)
.

This is because, by the symmetry of f about µ, f(2µ− k1) = f(k1) and F (2µ− k1) = 1−F (k1).

Consequently, k0 = 2µ − k1. By Equation 11, a voter with γ = µ is indifferent between k1 and

k0 if t = µ, and by Proposition 6 this is the unique point at which the median voter is indifferent.

�

Proposition 7 For any classifier, δ, marginal value of compliance, t, distribution F , and precision

φ, the reward

r∗(δ | t, F, φ) =
k∗

µ(t, F )

ρ(δ, φ)
,

is a Condorcet winner: it is preferred by a majority of individuals to any other reward, r ∈ R.

Proof. By Equation 11, individuals with γi > k0 · F (k0) + k1 · (1− F (k1)) + t · (F (k1)− F (k0))

have ideal point

r∗i =
k0

ρ(δ, φ)

and individuals with γi ≤ k0 · F (k0) + k1 · (1− F (k1)) + t · (F (k1)− F (k0)) have ideal point

r∗i =
k1

ρ(δ, φ)
.

Consequently, a majority of individuals will share the median voter’s ideal point in r.

Proposition 8 When rewards are chosen democratically, every voter is indifferent between all non-

null classifiers. Regardless of how rewards are chosen, every voter is indifferent between all null

classifiers.

Proof. By Corollary 1 we know that, given any non-null classifier and at rewards r∗, individuals

will choose βi = 1 if and only if γi ≤ k∗

µ(t, F ), and that k∗

µ(t, F ) is invariant to any non-null

classifier. Substituting r∗ into Equations 20 and 21, individuals choosing βi = 1 receive a payoff of

k∗

µ(1−F (k∗

µ))+tF (k∗

µ)−γi and individuals choosing β∗

i = 0 receive a payoff of tF (k∗

µ)−k∗

µ(t, F )·

F (k∗

µ). Both these payoffs are invariant to classifier, and as k∗

µ(t, F ) is constant across non-null
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classifiers, every voter is indifferent over every non-null classifier when rewards are democratically

chosen.

For a null classifier, δ1 = 1 − δ0. Substituting this into Equations 20 and 21, individuals with

γi ≤ 0 receive a payoff of tF (0) − γi, and individuals with γi > 0 receive a payoff of tF (0).

Again, payoffs are invariant to classifier, for any null classifier.

Proposition 10 When k∗

µ(t, F ) 6= 0, there never exists a null equilibrium when:

F (0) ∈

(

(B1 − B0)(1− φ)

B1 − B0 − φ(A0 −A1 +B1 −B0)
,

(B1 − B0)φ

A1 − A0 − φ(A1 −A0 −B1 +B0)

)

.

Otherwise, there always exists a null equilibrium.

Proof. Note that when A1 = A0 and B1 = B0 then the designer is indifferent over all classifiers

when r∗ = 0. In this case, the designer cares solely about the behavior of the individuals, and not

how they are classified. As he can’t affect their behavior when the reward is zero, all classifiers are

optimal, including null ones.

We’ll move on to assume that A1 ≥ A0 and B1 ≥ B0, with one inequality strict. At a null

equilibrium, r∗ = 0, and so conditional on prevalence πF = F (0) it must be optimal for D to

use a null classifier. If it was not optimal for D to use a null classifier at r∗ = 0, then we could

not support r∗ = 0 as an equilibrium, as the median voter strictly wants to either incentivize or

disincentivize compliance (because k∗

µ(t, F ) 6= 0).

When r∗ = 0, D’s choice of classifier can’t affect compliance, and so his problem is linear in

δ1, δ0. Accordingly, letting

χ1(δ, φ, r, F ) ≡
πF (δ, φ, r)φ

πF (δ, φ, r)φ+ (1− πF (δ, φ, r))(1− φ)
, and

χ0(δ, φ, r, F ) ≡
(1− πF (δ, φ, r))φ

(1− πF (δ, φ, r))φ+ πF (δ, φ, r)(1− φ)
,

then, conditional on a signal of si = 1, D will choose

di(si = 1) =







1 if χ1(δ, φ, r, F )(A1 − B0) +B0 ≥ χ1(δ, φ, r, F )(A0 − B1) +B1,

0 otherwise.

Similarly, conditional on a signal si = 0, D will choose

di(si = 0) =







0 if χ0(δ, φ, r, F )(B1 − A0) + A0 ≥ χ0(δ, φ, r, F )(B0 − A1) + A1,

1 otherwise.

It follows that when F (0) ∈
(

(B1−B0)(1−φ)
B1−B0−φ(A0−A1+B1−B0)

, (B1−B0)φ
A1−A0−φ(A1−A0−B1+B0)

)

it is optimal for D

to set di = si, and to choose (δ1, δ0) = (1, 1). Consequently there can’t be a null equilibrium
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in this case. This is the only possible non-null classifier for D; the fact that we have assumed

that A1 ≥ A0 and B1 ≥ B0 means that is is not possible for di = 1 − si to be optimal for D.

Consequently, if our condition on F (0) doesn’t hold, it must be the case that it is optimal for D

to choose a null classifier at r∗ = 0. And at any null classifier, r∗ = 0 is optimal for the median

voter.

Proposition 11 In any non-null equilibrium, r∗ =
k∗µ(t,F )

(δ∗
1
+δ∗

0
−1)(2φ−1)

and δ∗ is as follows:

• If k∗

µ(t, F ) > 0,

δ∗ =







(1, δ∗0(k
∗

µ(t, F ), 1)) with δ∗0(k
∗

µ(t, F ), 1) 6= 0, or

(δ∗1(k
∗

µ(t, F ), 0), 0) with δ∗1(k
∗

µ(t, F ), 0) 6= 1

• If k∗

µ(t, F ) < 0,

δ∗ =







(0, δ∗0(k
∗

µ(t, F ), 0)) with δ∗0(k
∗

µ(t, F ), 0) 6= 1, or

(δ∗1(k
∗

µ(t, F ), 1), 1) with δ∗1(k
∗

µ(t, F ), 1) 6= 0.

Proof: The terms δ∗0(k
∗

µ(t, F ), 1), δ∗0(k
∗

µ(t, F ), 0), δ∗1(k
∗

µ(t, F ), 1), and δ∗1(k
∗

µ(t, F ), 0) are defined in

Section 6.1 of the Appendix, and represent the (unique and possibly interior) critical points of the

designer’s payoff function.

Note that when k∗

µ(t, F ) > 0 (k∗

µ(t, F ) < 0) then the algorithm and reward must be positively

(negatively) responsive in equilibrium. This means that more (less) individuals are being incen-

tivized to engage in βi = 1 than would in the absence of any reward. When k∗

µ(t, F ) > 0, it must

be the case that r∗ · (δ∗1 + δ∗0 − 1) > 0. Consequently either r∗ > 0 and δ∗1 + δ∗0 > 1, or r∗ < 0 and

δ∗1+δ∗0 < 1. In the former case, D’s payoffs are strictly quasiconcave in δ0 and strictly quasiconvex

in δ1 (Proposition 4). Consequently, δ∗1 = 1 and δ∗0 ∈ {δ∗0(k
∗

µ(t, F ), 1), 1}. In the latter case, D’s

payoffs are strictly quasiconcave in δ1 and strictly quasiconvex in δ0. Consequently, δ∗0 = 0 and

δ∗1 ∈ {δ∗1(k
∗

µ(t, F ), 0), 0}. The case of k∗

µ(t, F ) < 0 can be proved similarly. �

Proposition 12 If k∗

µ(t, F ) > 0 then there does not exist a non-null equilibrium when A1 = B0, or

when B1 = B0 > A1 = A0. If k∗

µ(t, F ) < 0 then there does not exist a non-null equilibrium when

A0 = B1, or when A1 = A0 > B1 = B0.

Proof. The cases where A1 = B0 or B1 = A0 follow directly from evaluating the terms ∆∗

i (k, δj)

at A1 = B0 and at A0 = B1. When A1 = B0 and k∗

µ(t, F ) > 0 then non-null equilibria must

be of the form (δ1, δ0) = (1, δ∗0(k
∗

µ(t, F ), 1)) or (δ1, δ0) = (δ∗1(k
∗

µ(t, F ), 0), 0). However, when
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k∗

µ(t, F ) > 0 then δ∗0(k
∗

µ(t, F ), 1) = 0 and δ∗1(k
∗

µ(t, F ), 0) = 1. Consequently, there is not a non-

null classifier that maximizes D’s payoff, as D seeks to minimize δ∗0(k
∗

µ(t, F ), 1) over the set (0, 1]

and to maximize δ∗1(k
∗

µ(t, F ), 0) over the set [0, 1). The case of B1 = A0 is proved similarly.

When A1 = A0 > B1 = B0 or B1 = B0 > A1 = A0 we can prove this result via Corollary

2. Suppose that A1 = A0 > B1 = B0. By our corollary, if r > 0 then (1, 1) is the unique

optimal classifier for D and if r < 0 then (0, 0) is the unique optimal classifier. However, if

k∗

µ(t, F ) < 0 then r∗(δ∗1 + δ∗0 − 1) < 0 at a non-null equilibrium, which implies that either r∗ > 0

and δ∗1 + δ∗0 − 1 < 1 or r∗ < 0 and δ∗1 + δ∗0 − 1 > 1. These inequalities are both inconsistent with

optimizing behavior by D, and consequently there doesn’t exist a non-null equilibrium.

Proposition 13 For any precision φ ∈
(

1
2
, 1
]

and non-null classifier δ, the social welfare maximiz-

ing reward, r∗SW (δ, φ) is defined by:

r∗SW (δ, φ) =
t

ρ(δ, φ)
.

Proof. The necessary first order condition for maximizing social welfare is:

f(r · ρ(δ, φ))(−r · ρ(δ, φ)2 + t · ρ(δ, φ)) = 0. (22)

Equation (22) implies that social welfare is uniquely satisfied by

r∗SW (δ, φ) =
t

ρ(δ, φ)
.

We do not need to check the second order sufficient condition. This must be a global maximum,

as Equation 22 is positive for r < t
ρ(δ,φ)

and negative for r > t
ρ(δ,φ)

.
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