Manipulation and Single-Peakedness: A General

Result

Elizabeth Maggie Penn \Washington University in Saint Louis
John W. Patty Wwashington University in Saint Louis
Sean Gailmard University of California at Berkeley

This article considers environments in which individual preferences are single-peaked with respect to an unspecified, but
unidimensional, ordering of the alternative space. We show that in these environments, any institution that is coalitionally
strategy-proof must be dictatorial. Thus, any nondictatorial institutional environment that does not explicitly utilize an a

priori ordering over alternatives in order to render a collective decision is necessarily prone to the strategic misrepresentation
of preferences by an individual or a group. Moreover, we prove in this environment that for any nondictatorial institution,
the truthful revelation of preferences can never be a dominant strategy equilibrium. Accordingly, an incentive to behave
insincerely is inherent to the vast majority of real-world lawmaking systems, even when the policy space is unidimensional

and the core is nonempty.

he question of manipulation—the misrepresenta-

tion of one’s true preferences in order to achieve

a more favorable collective decision—has alter-
nately intrigued and frustrated social scientists for over
two centuries.! Manipulation is clearly a potential prob-
lem for those interested in drawing inferences from in-
dividuals’ observed behaviors. For example, how does a
legislator’s roll-call vote relate to his or her policy prefer-
ences? How does an individual voter’s vote choice reflect
his or her preferences over the parties and/or candidates?
More subtly, does the composition of alegislative commit-
tee reflect the preferences of the members of the legisla-
ture? Does a juror’s vote to convict a defendant truthfully
reflect the juror’s beliefs about the defendant’s guilt or in-
nocence? Is the president’s choice of political appointees
indicative of the policies that he or she would pursue in
their positions? In short, manipulation is simultaneously

a methodological and normative conundrum of broad
relevance to those who study politics.

Furthermore, the conundrum is—in a very precise
sense—inescapable: Allan Gibbard and Mark Satterth-
waite famously and independently demonstrated that,
when there are at least three alternatives to choose from,
any collective choice procedure that eliminates the po-
tential incentive for manipulation must be dictatorial.?
The Gibbard-Satterthwaite theorem closely mirrors Ken-
neth Arrow’s impossibility result, which states that any
democratic institution that can aggregate individual pref-
erences so as to always produce a transitive social rank-
ing of the alternatives without violating either Pareto
efficiency or independence from irrelevant alternatives
(ITA) must also be dictatorial.’> The theorems of Arrow,
Gibbard, and Satterthwaite all have strongly negative im-
plications about the predictability and performance of
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Tlustrating the topic’s long lineage is Condorcet’s 1788 treatise “On the Constitution and the Functions of Provincial Assemblies,” in
which he argued that Borda’s scoring method was highly prone to strategic manipulation by voters (cf. Young 1995).

2See Gibbard (1973) and Satterthwaite (1975).
3See Arrow (1963).
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MANIPULATION AND SINGLE-PEAKEDNESS

democratic group choice. Perhaps the most famous ar-
gument along these lines was offered by Riker (1982).* It
is indeed accurate to summarize the perception of demo-
cratic governance following these seminal results as “be-
devilled by impossibility, instability, and arbitrariness”
(Dryzek and List 2003, 2).

On the other hand, Black’s median voter theorem im-
plies that Arrow’s negative conclusions regarding prefer-
ence aggregation disappear if one presumes that the poli-
cies can be ordered along a left-right spectrum so that
every individual’s preference over the alternatives is
single-peaked.” The assumption that individuals have
single-peaked preferences guarantees the existence of
at least one alternative that cannot be defeated by any
other under majority rule (i.e., the majority rule core is
nonempty). Furthermore, the importance of this result
for the development of political theory over the past half
century is hard to overstate: contrasted with the results
of McKelvey (1976), Schofield (1978), Rubinstein (1979),
and Riker (1980), the theoretical power of the unidimen-
sional spatial model underlying the institutional theories
of the past 30 years has proven undeniably productive in
advancing our understanding of the interactions between
individual preferences, strategic behavior, and political
institutions.® Indeed, the central insight of the notion
of structure-induced equilibrium (Shepsle 1979) is that
institutions might be structured so as to reduce a sin-
gle, difficult-to-predict multidimensional policy decision
into a well-ordered set of unidimensional, partial pol-
icy decisions. The following quotes demonstrate that the
distinction between the unidimensional and multidimen-
sional settings has been repeatedly cast as dispositive with
respect to, variously, the simplicity, stability, predictabil-
ity, and even coherence of political decision making.

“When all individuals have single peaked pref-
erence orderings the process of collective deci-
sion making is dramatically simplified.” (Feld
and Grofman 1988, 776)

“Where preferences are single peaked..., one
option must be the Condorcet winner and it

*Of course, Riker’s arguments have—quite rightfully—not gone
unchallenged. While they adopt very different starting points, both
Mackie (2003) and McGann (2006) have recently offered counter-
arguments to Riker’s criticisms of democratic institutions.

Black (1948).

SThis literature is too vast to cite in anywhere near an exhaus-
tive fashion, but a list of seminal contributions in this literature
would certainly include Romer and Rosenthal (1979), Denzau
and Mackay (1983), Austen-Smith and Banks (1988), Gilligan and
Krehbiel (1989, 1990), Krehbiel (1991, 1998), Rohde (1991), Cox
and McCubbins (1993, 2005), Epstein and O’Halloran (1999), and
Groseclose and McCarty (2001).
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would be possible to find this by repeated binary
votes.” (Miller 1992, 63)

“In a unidimensional world, there is no incentive
for ‘sophisticated voting.” ” (Mouw and Mackuen
1992, 102, fn. 4)

“[When preferences are single peaked] voters
know the political world is coherently organized,
the possibility of cycles is zero and the method
of majority rule is wholly consistent and never
tyrannical.” (Riker 1992, 107)

“[R]elaxation of [unrestricted domain] provides
acceptable escape-routes from Arrow’s theorem
and from the Gibbard-Satterthwaite theorem,
compatible with all other conditions of these the-
orems.” (Dryzek and List 2003, 27-28)

“We do know for sure that if the distribution
of preference orders is such that they are single
peaked, the Gibbard-Satterthwaite theorem does
not apply, there is no chance for strategic voting
to succeed.” (Mackie 2003, 161)

In this article, we distinguish between the im-
plications of single-peakedness for Arrow’s result
and the implications of this assumption for the
Gibbard-Satterthwaite theorem. Specifically, while single-
peakedness is sufficient to escape from the negative con-
clusions of Arrow, we demonstrate in this article that the
assumption of single-peaked preferences is not sufficient
to eliminate the possibility of profitable manipulation of
democratic collective choice. That is, when there are at
least three alternatives to choose from, the potential for
strategic behavior is endemic to all democratic political
institutions, even when preferences are single-peaked.”

Our results rest upon the fact that, in order for single-
peaked preferences to provide an escape route from the
conclusions of Gibbard-Satterthwaite, one must require
thatindividuals may vote for alternatives only in a way that
is consistent with the underlying ordering of alternatives. In
other words, if the underlying ordering of alternatives
on the left-right spectrum is x < y < z, then ruling out
profitable manipulation requires that one disallow any

"It is almost obligatory to note at this point that—in spite of its
potentially unsettling mendaciousness—“manipulation” need not
be a bad thing. For example, Miller (1977) shows that when all
individuals vote strategically, outcomes may be obtained that are
Pareto superior to outcomes obtained if all individuals vote truth-
fully. Furthermore, “manipulation” is a large tent, encompassing
a wide array of behaviors. For example, Dowding and Van Hees
(2007) distinguish between “sincere” and “nonsincere” forms of
manipulation.
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individual, for example, from casting a vote for x over z
and a vote for z over y. In other words, Black’s theorem
implies that majority rule is strategy-proof provided that
individuals aren’t too strategic.® In this sense, our results
illustrate that, even with a strong restriction on the struc-
ture of the underlying preferences, “institutions matter”
insofar as every democratic procedure necessarily gener-
ates the incentive for strategic misrepresentation by one
or more individuals.

Thus, the arguments in this article demonstrate that
Riker’s famous—and arguably unwarranted—dismissal
of single-peakedness as empirically irrelevant’ was un-
necessary for his conclusion that political outcomes “are
the consequence not only of institutions and tastes, but
also of the political skill and artistry of those who ma-
nipulate agenda, formulate and reformulate questions,
generate ‘false’ issues, etc., in order to exploit the disequi-
librium of tastes for their own advantage” (Riker 1980,
445). Riker’s discussion of political strategy—particularly
the introduction of “false issues”—is directly spoken to
by our results. This is because one of the keys to our result
is that knowing with certainty that the alternatives can be
ordered so as to induce a single-peaked profile of prefer-
ences is not equivalent to knowing how the alternatives
will be ordered. As we demonstrate in both the proof of
the result and two motivating examples following it, the
assumption of single-peaked preferences is not sufficient
to rule out some situation existing in which a group of in-
dividuals agree that they would prefer to misrepresent (or,
perhaps, more charitably, “dispute”) the true left-right or-
dering of alternatives. Thus, referring to the passage from
Riker (1992) quoted earlier, our results demonstrate while
the presumption of single-peaked preferences does im-
ply that collective preference is “coherently organized,”
and the possibility of sincere majority preference cycles is
indeed zero, one should still not neglect political insti-
tutions, as any democratic choice procedure necessarily
holds the possibility of a revealed collective preference
cycle.

8This point was—to our knowledge—first noted by Blin and Sat-
terthwaite (1976), who examined one specific collective choice
rule (majority rule with Borda completion) and showed that it
is strategy-proof when preferences and ballots are required to be
single-peaked with respect to a common ordering, but is manip-
ulable when ballots are no longer required to be single-peaked
with respect to the common ordering. Our results are stronger in
one sense—we consider all collective choice rules—and somewhat
qualified in another—we focus on coalitional strategy-proofness,
which is a stronger condition for a collective choice rule to satisfy.
In the canonical special cases of exactly three voters, our results are
strict generalizations of the insights of Blin and Satterthwaite.

Riker (1980, 438).
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Notation and Definitions

We consider choice from a finite collection of K alterna-
tives (or policies), X, and a finite collection of n individuals
(or voters) N. We assume that K > 3 and n > 2. Individual
i’s preferences are represented by a strict, transitive, and
complete binary relation P;. The notation x P;y implies
that 7 strictly prefers x to y. If x} P;y for all y # x}, then
x} is referred to as i’s most-preferred policy or ideal point.

Throughout, p = (Py,...,P,) denotes an n-
dimensional preference profile describing the preferences
of all individuals, and we let x¥(p) denote 7’s ideal point
at profile p. The notation P” represents the collection
of all n-dimensional profiles of strict orders on X. Any
nonempty set D C P" is referred to as a preference do-
main,and when D is a strict subset of P" then D is referred
to as a restricted domain. We discuss restricted domains
in more detail in a following section. For any preference
profile p € P", p|s denotes the restriction of p to the set
of alternatives S € X. Similarly, for any individual prefer-
ence P; € P, P;|s denotes the restriction of 7’s preference
relation to the set S. For any preference profile p € P"
and pair of alternatives (x, y) € X?, the notation P(x, y;
p) = {i € N: xP;y} denotes the set of individuals who
strictly prefer x to y under p.

Collective Choice Functions

A collective choice function, or choice function, is any func-
tion, ¢ : P"* — X that maps any strict profile of orderings
over alternatives into the policy space X. Throughout, we
will assume that ¢ has full range: for any x € X, there exists
ap € P"such that &(p) = x. In words, the notation &b(p)
= x means that the choice function ¢ chooses outcome x
€ X when the profile of individuals’ preferences is given
byp.

While we require choice functions to map any strict
profile into a social outcome, we do not require individ-
uals’ true preference orderings to be drawn from the full
set P”. This is because we are interested in the (possibly
insincere) behavior induced by a choice function when
true individual preferences are drawn from a restricted
domain. We call the preference domain of a choice func-
tion D, while the ballot domain of all choice functions is
assumed to be P". In other words, while true individual
preferences may come from a restricted set of orderings,
individual behavior is only required to appear individ-
ually rational, in the sense of being rationalizable by a
transitive binary relation. Throughout, we will use the
notation (P’, p_;) to denote a ballot profile in which i
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submits ballot P’, and all others submit ballots as in pro-
file p. More generally, the notation (p}, p_;) denotes a
ballot profile in which all members i € L € N submit
ballots as under p’, and all individuals not in L submit
ballots as under p.

The following definitions characterize several prop-
erties of collective choice functions.

Definition 1 (Weakly Paretian). A collective choice func-
tion ¢ is weakly Paretian on D if for all p € D and all (x,
y) € X2,

P(x,y;p) = N= &(p) # ».

Definition 2 (Monotonic). A collective choice function ¢
ismonotonic on D if, forall (x, y) € X* andallp,p’ € D,

P(x, y;p) C P(x, y;p") and d(p) = x = d(p’) # y.

Definition 3 (Dictatorial). A collective choice function ¢
is dictatorial if for some i € N and forall p € P”,

d(p) = x(p).
where x}(p) is i’s reported ideal point under ballot profile
10
p.

Definition 4 (Strategy-Proof [SP]). A collective choice
function ¢ is manipulable if, for somep = (Py, ..., P,) €
D and i € N there exists a P] € P such that

G(P/, p_i) Pid(p).
A choice function is strategy-proof if it is not manipulable.

Definition 5 (Coalitionally Strategy-Proof [CSP]). A col-
lective choice function & is coalitionally manipulable if, for
some p =(P,...,P,) €D and L C N there exists a
p’ € P" such that

dlpy, p—1) Pid(p) for alli € L.

A choice function is coalitionally strategy-proof if it is not
coalitionally manipulable.

Note that individual manipulability of social choice
functions implies coalitional manipulability (for a coali-
tion of one); equivalently, coalitional strategy-proofness
implies strategy-proofness. The converse is not gener-
ally true; there may be instances in which a social choice

19Note that the previous definitions are defined on the preference
domain D while dictator is defined on ballot domain P”. We make
these definitional choices conservatively; we are ultimately going
to prove that coalitional strategy-proofness when preferences are
single-peaked will imply dictator on the full ballot domain. Our
intermediary steps in this proof will only utilize the weak Pareto
and monotonicity properties on the restricted preference domain.
However, by implying dictator on the full ballot domain, our proof
also guarantees that the collective choice functions we consider are
both weakly Paretian and monotonic on the full ballot domain.
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function may be manipulable by a sufficiently large coali-
tion, but not by an individual. However, when D = P",
then individual strategy-proofness implies coalitional
strategy-proofness, because it implies dictatorship. Thus,
in a setting with unrestricted domain, individual and
coalitional manipulability and nonmanipulability are
equivalent.

Single-Peaked Preferences

In this section, we define the domain of single-peaked
preferences. This domain has attracted the interest of
many scholars because it has been shown to lead to the ex-
istence of nondictatorial Arrovian preference aggregation
rules and, when ballots are required to be single-peaked,
to nonmanipulable, nondictatorial collective choice func-
tions. Our interest is less about existence, and more about
the characterization of choice functions on this restricted
domain.

Single-Peaked Preferences. A preference profileis single-
peaked if there exists a way of ordering the collection of
alternatives along a left-right scale so that each individ-
ual’s ranking of the alternatives decreases as one moves
away from his ideal point (Austen-Smith and Banks 1999,
93). We denote the single-peaked preference domain by
S C P". We will at times denote by Q, a particular or-
dering of alternatives with respect to which profilep € &
is single-peaked. When referring to an ordering Q, if al-
ternative x is above y with respect to Q we write x Qy.

While the single-peaked preference restriction is
widely utilized and intuitively quite simple, Ballester and
Haeringer (2011) prove that the set S is completely char-
acterized by two conditions, worst-restriction'! and «-
restriction, each of which is defined below. Prior to that,
however, it is important to emphasize that the domain &
is the set of all single-peaked preference profiles. In other
words, in a priori terms, any ordering of the alternatives
is possible.'?

See Sen (1966) and Sen and Pattanaik (1969) for a more thorough
discussion of worst-restriction.

2This point is a technical one, but important for broader consid-
erations of the results in this article. In particular, for any given
linear ordering of the alternatives, Q € P, one can identify the set
of preferences that are single-peaked with respect to Q, this set is
denoted by S, and the set of all profiles of such preferences is
denoted by S, a rectangular (product) space. Conversely, the set
& that we consider is not rectangular. Unlike S, the space S, is
widely discussed in the political economy literature. In particular,
it has been shown that in domain Sy, the collection of strategy-
proof collective choice functions can be completely characterized
by the set of augmented median voter rules. See Moulin (1980),
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Definition 6 (Worst-restriction). A profile p is worst-
restricted if, for every triple of alternatives, (x, y, z) € X°,
there exists an a € {x, y, z} such that for eachi € N, a P;b;

for some b; € {x, y, z} \ {a}.

In words, a profile is worst-restricted if for every triple
(%, 9,2) € X3, there is some element of that triple that no
individual ranks last relative to the other two elements of
the triple.

Definition 7 (a-Restriction). A preference profile p is a-
restricted if there do not exist two agents, i, j € N, and four
alternatives w, x, y, and z such that

1. The preferences over w, x, and z are opposite:
w Pix Piz and zP;x Pjw.

2. The players both rank y higher than x: y P;x and
yPjx.

Theorem 1 (Ballester and Haeringer 2011). A preference
profile p issingle-peaked—p € S—ifand only if it satisfies
worst-restriction and o-restriction.

Ubeda (2003) has recently used a different domain
restriction, the two-free triple domain (7;"),"* to demon-
strate that on any domain satisfying this restriction, any
weakly Paretian and ITA aggregation rule must be neutral,
where neutrality characterizes those aggregation rules
that disregard the labeling of alternatives when making
pairwise comparisons. Because our article is concerned
with collective choice rules and not preference aggrega-
tion rules per se, we omit the technical details of Ubeda’s
result and our previously published Theorem 2 below.
The key distinction between Ubeda’s result and ours is
that the two-free triple domain and the single-peaked do-
main are not nested. In other words, satisfaction of either
the two-free triple restriction or single-peakedness does
not imply satisfaction of the other. We provide Theorem
2 below because it demonstrates the implications of Ar-
row’s axioms on the single-peaked domain and thus is
substantively linked to our results that follow concern-
ing manipulation on this domain. In the third section,
we will more explicitly discuss how the implications of
single-peakedness for Arrow’s result differ from the im-
plications for the Gibbard-Satterthwaite theorem.

Border and Jordan (1983) and Austen-Smith and Banks (2004, 41,
Theorem 2.4).

3This domain restriction says that for any triple of alternatives,
only two orderings of the triple are possible across all individuals.
While profiles on this domain will satisfy worst-restriction, they
may fail a-restriction, with a clear example being the case with two
individuals with preferences: wP;yPxP; z and zP,yP,xP,w.
Similarly, the following three-player profile is single-peaked but is
not an element of the two-free triple domain: x P,y P,z, yP,xP,z,
and zP;xP;y.
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Theorem 2 (Gailmard, Patty, and Penn 2008). Let F be
a weakly Paretian and IIA preference aggregation rule. If
D = S, then F is neutral.

Manipulation on Single-Peaked
Domains

In this section, with the primitives from the previous sec-
tion in hand, we state and prove our main results. First
we prove that single-peakedness is not sufficient to ensure
that groups of individuals cannot be made better off by
submitting insincere ballots; in other words, any nondic-
tatorial collective choice function is necessarily manipula-
ble by a coalition at a single-peaked profile of preferences.
Then we show that a collective choice function being ma-
nipulable by a coalition implies that it cannot be a domi-
nant strategy equilibrium for all individuals to truthfully
reveal their preferences. Thus, when a nondictatorial in-
stitution is required to consider all possible collections of
ballots as potential inputs, truth telling can never be a dom-
inant strategy for all individuals, even when preferences are
single-peaked.

The Impossibility of Coalitional
Strategy-Proofness

To prove that coalitional strategy-proofness implies dic-
tatorship on preference domain D = S, we utilize the
following lemmas and theorem.

Lemma 1. Let & be a coalitionally strategy-proof collective
choice function with full range. If D = S, then ¢ is weakly
Paretian.

Proof: Consider a p € § such that for all i € N, xP;y,
but &(p) = y. By full range, Ip’ € P" with d(p’) = «.
Then ¢(p’) P;d(p) forall i € N, and ¢ is manipulable by
coalition N. It follows that d(p) # y if ¢ is CSP. O

Lemma 2. Let ¢ be a coalitionally strategy-proof collec-
tive choice function with full range. If D =S, then ¢ is
monotonic.

Proof: Suppose that p and p’ are single-peaked, but vi-
olate monotonicity, with ¢(p) = x, d(p’) = y, and P(x,
¥;p) S P(x, y; p’). We will show that this implies ¢ is
not CSP on S. Throughout the proof, let P(x, y;p) = A
and P(y, x; p’) = B. We know that AN B =0.

First, to simplify notation, change p so that for all i
€ A, P;is replaced by a new preference ordering P,. We
construct Py so that x is top ranked and y is as high in
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the P4 ranking as possible while maintaining P, single-
peaked with respect to Q,. It is easy to verify that such an
ordering exists.

Similarly, change p’ so that for all j € B, P’} is re-
placed by anew preference ordering P’; thatis constructed
so that y is top ranked and x is as high as possible in the
P’y ordering while maintaining that P’y is single-peaked
with respect to Q,/. CSP implies that for each of these
new profiles (which in an abuse of notation we will still
call p and p’), d(p) = x and b(p’) = y.

Consider the triple, x, y, z € X, with z arbitrary.
p,p’ €S imply that for each profile, one of these ele-
ments cannot be lowest ranked by any individual. If at
profile p the two remaining elements are a, b, we say that
(a, b) is lowest ranked for p (4,2

Construct a new profile p* € P" in which P¥ = P,
fori € A and P} = Pjfor j € B. Note that rankings are
unspecified for k ¢ AU B, if N\{ AU B} # @. These in-
dividuals’ rankings can be arbitrarily assigned. Also note
that p* may not be single-peaked; our choice function
is still required to produce an outcome at this profile,
however. Then it must be the case that ¢(p*) & {x, y},
else either coalition N\ A could manipulate p with p*, or
N\ B could manipulate p’ with p*. Thus, b(p*) = z.

Note that in constructing p (and p*) above, we have
ensured that the only instances in which zP4y are those
in which z lies between x and y under the ordering Q,
(i.e., xQpzQ,y, or the reverse). This is because, while
maintaining both single-peakedness and x as top ranked
for Py, y is ranked as high as possible for P4. Similarly,
zP’gx implies that z lies between x and y according to

Qp’-

Case 1: (x, y) is lowest ranked for either p|(x,y 2 or for
P'lix.y.z}- Without loss of generality, assume that (x, y) is
lowest ranked for p|\x.y.zy. This implies that for all individ-
ualsk ¢ A, y Pkx = zPyx. Thus, d is manipulable atp by
coalition N\ A submitting ballots as in p*; these individu-
als can guarantee themselves the outcome z, which they all
prefer to x. It follows that ¢ is not CSP.

Case 2: z is a lowest ranked element of both p|x.,.,, and
P'lix,y.z}- Note that by the construction of p and p’ above,
yPazand xP'p 2.1

To recap, we have that all members of A (resp. B)
have the same preference ordering over all alternatives
and that this ordering ranks x Py y Pz (resp. y P’y x P’
z). Note also that x, y, z need not appear consecutively

"This immediately implies that ¢ does not satisfy Pareto efficiency
on the full domain P", because p* can be constructed so as to have
all individuals not in AU B place x and y at the top of their ballots,
and so x P} zand y P} zforall k, and yet d(p*) = z.
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in these individuals’ rankings. Furthermore, p* as con-
structed above still yields z as its choice. However, now
members of coalition N\ A (resp. N\ B) may rank z last
relative to x and y and may not have an incentive to ma-
nipulate ¢ by submitting ballots as in p*.

We will now constructanew p® € S and show that ¢
CSP for p implies that ¢ not CSP for p?, thus establishing
a contradiction. This will take several intermediate steps.
First, consider the ordering over alternatives induced by
the preferences of individuals in A under p; we will call
this ordering Q,, and we know that under this ordering
xQayQaz. Construct a new profile p where b, = P, for
all i € A. Clearly this P; is single-peaked with respect
to the ordering Qg, as it is this ordering. For all j & A,
assign each member of j an identical preference ordering
13]- that ranks y at the top of the ballot, ranks zf)jx, and is
single-peaked with respect to Q4. Such an ordering exists
because y lies between z and x according to Q. Thus,
ped.

We know that coalition N\ A can submit ballots as in
p* and receive z as an outcome, which they prefer to x.
Thus, ¢(p) # x. Furthermore, (p) # z, by weak Pareto,
because for all i € N, yP;z. And by CSP of p, d(p) # ,
because then p would be manipulable by coalition N\ A
submitting ballots as in p. Thus, if | X| = 3, the proof
is complete. If not, it follows that &(p) = w, with all
members j € N\ Aranking yf’jwf)jzf)jx. However, this
implies that for all i € A, w P4y, otherwise p would be
manipulable by coalition A submitting ballots identical
to those for N\ A, and ensuring an outcome of y by weak
Pareto. Thus, Q4 ranks the alternatives x Qaw Q4 y Qaz.

Now consider a new profile p ! in which everyone in A
ranks the alternatives asin . For all j € N\ A, assign each
7 an identical preference ordering that ranks y at the top,
ranks zP ]-1 w P ]1 X, and is single-peaked with respect to Q4.
Again, such an ordering exists given that Q4 ranks the al-
ternatives x Qqw Q4y Qaz. Thus, p! € S. Using the same
logic as above, we get that &b(p!) # x or w (else N\ A
manipulates with p* to get z), that d(p') # z by Pareto
efficiency, and that &(p!) # y by CSP of our original p.
If | X| = 4, the proof is complete. Otherwise, d(p') = w!l,
with individuals j € N\ A ranking ypjl w! f’; ZIADJ-1 w 131-1 x.
Again, it follows thatforalli € A, Pil = P,ranksw! 131-1 ¥
otherwise this coalition would manipulate ' in order to
get y as the outcome. Thus, Q, ranks the alternatives
xQa {w!, w} QayQaz (the w!, w ranking need not be
specified in the proof, although by coalition N\ A’s pref-
erences, the ranking must respect w Q w'!).

Repeat the above steps for k = 2,..., |X| — 4 by
choosing a new p* with yf’;‘zf’;‘ ... forall j € N\A4,
and Pik = P, for i € A. Such a p¥ can be constructed
so as to always remain single-peaked with respect to Q4



442

because it must always be the case that the social choice
at each stage, wk, is ranked between x and yforalli e A
We ultimately get that Q4 ranks the alternatives x Q4 {w,
wh,w?, ... wK™*} QayQaz. Atthis point, construct p° so
that P? is such that ij”sz“{w, wl, ..., w'X‘_A‘}Pj“x for
all j € N\ Aand P/ = P,. Again, p° is single-peaked with
respect to Q4. CSP requires ¢(p°) P’z for all j € N\ 4;
otherwise this coalition would manipulate with ballots as
in p*. CSP of ¢ at p requires d(p°) # y. And these two
statements imply a contradiction. Thus, ¢ is not CSP. It
follows that ¢ CSP implies ¢ monotonicwhenD = S. O

For the next lemma, we will need the following two
definitions:

Definition 8 (Blocking coalition for (x, y)). A coalition
L € N is a blocking coalition for (x, y) if for all p =
(P1, ..., P,) € D such that xP;y foralli € L and yP;x
forall j & L, d(p) # y-.

Definition 9 (Blocking coalition). A coalition L € N isa
blocking coalition if for allp = (Py, ..., P,) € D and all
pairs (a, b) € X*, aPb foralli € L = &(p) # b.

Lemma 3. & coalitionally strategy-proof with full range
implies that if there exists one p € S with xP;y for all i
€ L and yPjx forall j ¢ L and &(p) = x, then L isa
blocking coalition.

Proof: Let p be such that xP;y for all i € L and yPjx
forall j ¢ L and ¢(p) = x. We will first show that L is
blocking for (x, y), and then that L is a blocking coalition.

Suppose that L is not blocking for (x, y), so that there
existsa p’ € S with xP} yforalli € L and yP’; x for all
j € L and ¢(p’) = y. By monotonicity, this implies that
&(p) # x, a contradiction. Thus, L is blocking for (x, y).

We will now show that L blocking for (x, y) implies
thatforany a ¢ {x, y}, L isblocking for (x, a) and for (a,
¥). Consider any p € S where i € L rank the alternatives
xPiyP;a, j ¢ L rank them y P;a Pjx, and all k € N have
cPrdwhenc € {a, x, y} and d ¢ {a, x, y}. Then d(p) =
x, by L blocking for (x, y) and by weak Pareto. Thus, L is
blocking for (x, a).

Now constructap’ € S with P’; = P;for j ¢ L and
with i € L having a Pix P;y and ¢ Pid when ¢ € {a, x,
y} and d ¢ {a, x, y}. In this case d(p’) = a, again by L
blocking for (x, y) and by weak Pareto. Thus, L is blocking
for (a, y).

Because a was chosen at random, the above argument
proves that L is also blocking for any distinct pair (¢, d): L
blocking for (x, y) implies L blocking for (¢, y), and this
implies L blocking for (¢, d), for any d # y.

Last, by monotonicity, we will show that L blocking
for all (a, b) implies that at any profile p € S in which
aPibforalli € L, then ¢(p) # b. Suppose not; suppose
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that &(p) = b. Let Q be the ordering that p is single-
peaked with respect to. Now consider a p’ that is also
single-peaked with respect to Q, in which P} = P; for
alli € L, and for each j & L, P; is replaced by a P;- in
which b is top ranked for P’. By monotonicity, d(p’) =
b. However, under p’ we have a P;b for all i € L and bPia
forall j & L.d(p") = b contradicts L blocking for (a, b).
Thus, L is a blocking coalition. |

Theorem 3. Let & be a coalitionally strategy-proof collec-
tive choice function with full range. If D = S, then ¢ is
dictatorial.

Proof: Consider three profiles p1, p2, p3 € & in which
the alternatives x, y, z are at the top of each person’s pref-
erence ordering, and all other alternatives are ordered
according to a fixed ordering Q_4y.}. Thus, save for alter-
natives {x, y, z}, rankings over all other alternatives are
identical across all individuals and all three profiles.

Let L € N be a “minimal” blocking coalition. Thus,
for any i € L, the set L\{i} is not a blocking coalition.
Such a coalition exists because, by Pareto, we know that
the collection of blocking coalitions is nonempty. Define
{x, y, z} rankings under p1, p,, p3 as follows:

P1 P2 Ps
i xPzPy xPyPz xPyPz
L\{i} yPzPx yPxPz yPzPx
N\L zPxPy zPxPy zPyPx

We know the following: &(p,) # z because all in L
prefer y to z; d(p3) # z because all in L prefer y to z;
&(p1) # y because everyone not in L\{i} prefers z to y,
and we have assumed that L\{i} is not a blocking coali-
tion; d(p,) # y because everyone not in L\{i} prefers x
to y, and we have assumed that L\{i} is not a blocking
coalition. These last two statements are consequences of
Lemma 3.

Condensing the above paragraph, we now know that
&(p1) = x or z, that d(p,) = x, and that dp(p3) = x or y.

Case 1: First, suppose that &(p ;) = z. This implies that
b(ps) = y, because (x, z) preferences are identical across
p1 and ps. Thus, d(p3) = x would violate monotonicity.

Now consider an insincere ballot p that is identical
to p1, p2, p3 forall w & {x, y, z} (i.e., these alternatives
are, for every individual, ordered according to Q_iyyz),
and with a Condorcet cycle over x, y, z at the top:

We know that &(p) = d & {x, y, z}; otherwise p1,
p2, or p3 would be manipulable by an individual or
a coalition submitting ballots as in p: ¢(p) =x =i
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A

p
i xPyPz
L\{i} yPzPx
N\L zPxPy

manipulates pi, d(p) = y = L\ {i} manipulates p,,
and ¢(p) = z= N\ L manipulates p;.

Now, construct a new profile p; € S with the prefer-
ences of all j 5 i identical to those given by (. Player
i’s new preferences rank d highest, with s rankings
overallw & {d, x, y, z} unchanged. This profile is single-
peaked according to the ordering specified by 7’s prefer-
ences, which can be verified by considering o- and worst-
restriction. Since all players have identical orderings over
alternatives not in {d, x, y, z}, moving d to the top of i’s
ranking cannot break worst-restriction (as all other play-
ers have the same ranking of 4 and any other alternative
a # d), and cannot break a-restriction, as only player i
has preferences over a triple that are the reverse of another
player’s preferences, and i is the unique player with d at
the top of his ballot.

&(p1) = d, otherwise &(p;) would be manipulable
by i submitting a ballot as in p. But, by Lemma 3, this
implies that 7 is a blocking coalition, because all other
players prefer x, y, and z to d. Thus, 7 is a dictator on S.

Case 2: It must now be the case that d(p;) = x. Then
immediately, by Lemma 3, this implies that i is a blocking
coalition, because i is the unique person who prefers x to z
at profile py. Thus, i is a dictator on S.

We have shown that 7 is a blocking coalition on pref-
erence domain S. To finish, we must show that i is a
dictator on the full ballot domain. Suppose not, so that
there exists p € P" with ¢(p) = y and with y # x/(p),
with x7(p) being 7’s reported ideal point under ballot pro-
file p. We also know that there exists a p’ € S with P; =
P} and with y = xf(p’) for all j # i."” Voter i being a
blocking coalition on S implies d(p’) = x. However, this
contradicts ¢ coalitionally strategy-proof, because ¢b(p”)
would be manipulable by N\{i} submitting ballots as in
p and attaining their ideal point, y. It follows that i is a
dictator on the full ballot domain. O

When n = 3, Theorem 3 can be strengthened to say
that if ¢ is a strategy-proof collective choice function and
D = S, then ¢ is dictatorial. However, we cannot weaken
coalitional strategy-proofness to strategy-proofness when

BSuchap’ € S would exist and be single-peaked, for example, for
an ordering of the policy space Q equal to i’s preference ordering,
so that xQy if and only if x P; y.
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n > 5. This point, along with what strategy-proofness
and coalitional strategy-proofness imply about dominant
strategy and Nash implementation, is explored in the next
section.

Strategy-Proofness and Truth Telling
as a Dominant Strategy Equilibrium

It is important to note that on a restricted preference do-
main and unrestricted ballot domain, strategy-proofness
of a choice function is no longer equivalent to that choice
function being truthfully implementable in dominant
strategies by a direct mechanism. Strategy-proofness sim-
ply tells us that at any truthful profile of ballots, no individ-
ual can submit an insincere ballot and strictly benefit from
that insincerity. It says nothing about whether individuals
may benefit from insincerity at profiles of ballots in which
other individuals are also being insincere. When the bal-
lot domain and preference domain are equivalent, the
definition of strategy-proofness implies dominant strat-
egy implementability, because every possible strategy (or
ballot) profile is also a preference profile. However, in
the setting we consider, the unrestricted domain of ballot
profiles (or strategy profiles) is larger than the collection
of single-peaked preference profiles.

In the next theorem, we will leverage our previ-
ous result on coalitional strategy-proofness to show that,
when considering an unrestricted ballot domain, there
exists no nondictatorial choice function that is imple-
mentable in dominant strategies when true preferences
are single-peaked. When preferences are single-peaked,
there do, however, exist strategy-proof collective choice
functions, or choice functions truthfully implementable
in Nash equilibrium. These results highlight the fact that
on the single-peaked domain we consider, the typical
equivalence between coalitional strategy-proofness and
strategy-proofness does not hold. The only coalitionally
strategy-proof choice function on S is dictatorial. How-
ever, in Theorem 5, we provide an example of a nondic-
tatorial choice function that is strategy-proof on S. It is
not, however, dominant strategy implementable. Prior to
presenting and discussing these results, however, we must
introduce some notation.

For any individual i € N, M; = P is the collection
of actions, or messages, available to individual ,and M =
X jenM is the set of all profiles of messages. Recall that
P is the collection of all strict orders on X. Thus, an
individual’s message is an ordering of the policy space.
An outcome function g maps a profile of messages m =
(my, ..., m,) € M into the policy space, X. The pair
(M, g) is a mechanism, or game form. If the collection of
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messages available to each individual is equal to the set of
preferences that the individual may have, the mechanism
is called direct.

Given amechanism (M, g), a strategy for personiisa
function o; mapping preference profiles p € D into mes-
sages, so that a;(p) = m;. A game, G, consists of a mech-
anism and a preference profile, so that G = (M, g), p).
For any game G, a strategy profile 6*(p) € M is

e a dominant strategy equilibrium for G if and only if
for all i € N, all messages m; € M; andall m_; €
X j#iMi,
g(o(p), m_;) Rig(m;, m_;),
e a Nash equilibrium for Gifand only if foralli € N
and all m; € M;,

g(ar(p), o, (p))Rig(mi, *,(p)).

In words, then, a dominant strategy equilibrium is
one in which the best choice for any individual i, 0¥ (p ), is
independent of the strategies played by other players: it is
an unconditionally optimal choice. In a Nash equilibrium,
on the other hand, the strategy of any given player is
optimal, given the Nash equilibrium strategies being played
by other players.

A choice function ¢ with preference domain D and
ballot domain P" is

o truthfully implementable in dominant strategy equi-
librium if and only if there exists a direct mech-
anism (M, g) so that for all p € D,0*(p) =p
is a dominant strategy equilibrium for the game
G =(M.g).p)and g(p) = db(p),

o truthfully implementable in Nash equilibrium if and
only if there exists a direct mechanism (M, g) so
thatforallp € D, 0*(p) = p isaNash equilibrium
for the game G = ((M, g), p), and g(p) = d(p).

With these definitions in hand, the next theorem for-
mally links our social choice result, Theorem 3, with im-
plementation theory.

Theorem 4. If & is coalitionally manipulable, then ¢ is
not truthfully implementable in dominant strategy equilib-
rium.

Proof: Let ¢ be coalitionally manipulable. Then there
exists a coalition L € N,ap € D,andap’ € P" such that
&(p', p_r) P;id(p) for all i € L. Number the individuals
in N so that the individuals in L are numbered from
1 through |L|. Coalitional manipulability of ¢ implies
that there exists an i € L such that &(p'py, . -1}, Pl
pn\(L....i}) Pid(p'q1, . ic1p Pi pna, ....ip)- Thus, oi(p) =
P; is not a dominant strategy for person i. It follows that
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¢ is not truthfully implementable in dominant strategy
equilibrium. O

The following Corollary, which follows immediately
from Theorems 3 and 4, summarizes an important im-
plication of our results that we return to in a following
section. Specifically, the corollary implies that designing
deliberative institutions so as to implement the majority
will require accounting for obfuscation so long as indi-
viduals are strategic: sincere revelation cannot be made a
weakly dominant strategy.

Corollary 1. When D = S, there exists no nondictatorial
collective choice function that is truthfully implementable in
dominant strategies. In particular, a collective choice func-
tion that always returns a Condorcet winner when one exists
is not truthfully implementable in dominant strategies.

While Theorem 4 proved that coalitional manipula-
bility precludes the possibility of truthful dominant strat-
egy implementation, it does not rule out the possibil-
ity of truthful Nash implementation. However, as noted
earlier, when n = 3, Theorem 3 can be strengthened to
say that if ¢ is a strategy-proof collective choice function
and D = S, then ¢ is dictatorial. Thus, when n = 3 and
D = S, no nondictatorial choice function is truthfully
implementable in Nash equilibrium.

We cannot weaken coalitional strategy-proofness to
strategy-proofness when n > 5, and therefore, in this sit-
uation we can design a mechanism in which the truthful
revelation of preferences is a Nash equilibrium. This is
because with four or more voters and a single person
submitting an insincere ballot, the set of potential ma-
nipulators can be narrowed to two or fewer individuals in
any situation in which the submitted profile of ballots is
not single-peaked.'® In the absence of a core alternative in
the submitted profile of ballots, removing these individu-
als would yield a profile admitting a nonempty core, and
even if the resulting core is multivalued, the individual
can never profit from having his ballot dropped.!”

Theorem 5. For any n > 5, there exists a nondictatorial
choice function possessing full range that is

16This is to say that we may not be able to uniquely identify an
insincere ballot, but we can identify a unique pair of individuals,
one of whom has submitted an insincere ballot.

'7Defining the institution’s behavior in instances in which the core
of a sincere ballot profile is potentially multivalued requires some
care. In particular, without knowledge of the underlying ordering
of alternatives, Q, we cannot break ties within the core in a way
that is not manipulable by an individual. However, in this case we
can specify an individual whose ballot is always discarded, thus
bringing us back to an effectively odd number of players. When
n = 4, however, this technique does not work because it reduces us
to a three-player world.
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e strategy-proof on the single-peaked preference do-
main and unrestricted ballot domain and
o truthfully implementable in Nash equilibrium.

Proof. Fix n > 5 and let Q represent any ordering of
the k alternatives in X, with Q ordering the k alter-
natives xi,..., Xx. Let p_p be the ballot profile gen-
erated by dropping the ballots of all individuals in L
C N and retaining all other ballots. Let C(p) € 2X be
the collection of majority core alternatives at profile p,
so that C(p) ={x € X: forally € X, [i: xPiy| > 7}.
Consider the following “Drop 2” choice function on
pepPm

1. If nis odd and p satisfies both worst-restriction
and a-restriction, then d(p) = C(p).

2. If nis even and p satisfies both worst-restriction
and a-restriction, then ¢(p) = C(p_(1)).

3. If p violates one of these conditions, then for each
i=1,..., ntest whether p _; satisfies both worst-
restriction and a-restriction. If so, let i € W.

(a) If |W] < n and n is odd, then &(p) =
argmin, ., {7}

(b) If |[W| < n and n is even, then ¢(p) =
argming e, )1}

(c) If |[W| = n, then d(p) = x;.

We will consider two cases: the case in which a ballot
profile is single-peaked, and the case in which it is not.
Letp* = (Py, ..., P,) € Sbeasincere preference profile,
with ¢(p*) = x*, and throughout, let >, denote the strict
majority preference relation induced by a profile p.

First, suppose that i can profitably manipulate ¢ at
profile p* with ballot P’, and that (P, p*,) is single-
peaked. Assuming that n is odd, this implies that x =
C(P’,p*;) # C(p*), and that x P;x*. However, we know
that x* >,. x, and, because xP;x*, that x* =(Plpr,) %o
contradicting the fact that x is the core of (P, p*,). If n
is even, this same logic holds, with p* replaced by p* ).

Second, suppose that (P, p* ) is not single-peaked.
Since i is the sole person submitting an insincere ballot, it
follows that i € W. It may also be the case that there exists
one other j € W; however, if p* € S, then |W| < 2.18
First, suppose # is odd. Then for this manipulation to be
profitable for i, we know that x = (P, p*;) € C(p_w),
and that xP;x*. Let W = {i} or W = {i, j}. Because
x* >p+ x,then x* >, xalso, and regardless of whether

8This is because with n > 5, at least two people will rank any
element of a triple last; thus, worst-restriction could be violated
by at most two ballots. Furthermore, a-restriction can only be
violated by a pair of individuals, and the true manipulator will be
in any such pair. Thus, a-restriction can be violated by at most two
individuals.
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W contains one or two individuals. Either one or two
supporters of x are removed and so x* is still majority-
preferred to x, or a supporter of x and a supporter of
x* are removed, thus canceling each other out. In either
case, x* >, , x, contradicting x € C(p_w). Supposing
now that # is even, the same argument holds, replacing
p* with p* ,, as appropriate.

Finally, having shown that this choice function is
strategy-proof is equivalent to having shown that every-
one submitting a sincere ballot, or 07 = P; for all i, is a
Nash equilibrium of the game ((P", ¢), p), forallp € S.
Thus, ¢ is truthfully implementable in Nash equilibrium.

O

Examples of Manipulation
in One Dimension

In this section, we consider two applications that illus-
trate the broader implications of our findings. The first
example, discussed next, demonstrates a feature of our
results that may not be apparent from the theoretical sec-
tions of this article, and that is important to note. As
discussed in the introduction, domain restrictions pose
different challenges when considering Arrow’s theorem
versus when one considers the Gibbard-Satterthwaite the-
orem. While coalitional strategy-proofness implies dicta-
torship of choice functions on S, ITA and weak Pareto
only imply neutrality of preference aggregation rules on
S.

We first offer an explicit illustration of this distinc-
tion between Arrow and Gibbard-Satterthwaite in the
domain of single-peaked preferences by considering a
canonical example of a generally nonneutral institution—
the amendment voting tree—that happens to be neutral
on S, that satisfies ITA and weak Pareto on S, and that
is also manipulable on S. Following that, we present a
simplification of the argument we use in our main the-
orem, Theorem 3. It demonstrates that the incentive to
manipulate will manifest itself as an individual or a coali-
tion either attempting to make the policy space appear
multidimensional or attempting to manipulate the true
dimension of conflict. We then discuss the implications of
the argument for recent work on deliberative democracy.

Amendment Agendas

In this section, we briefly consider an institution that has
received much attention in formal models of politics: the
amendment agenda. Under an amendment agenda, alter-
natives are voted upon in an ordered sequence of pairwise
votes. It is well known that in the absence of a Condorcet



446

FIGURE1 A Two-Stage
Amendment
Agenda

winner, these agenda procedures are highly manipulable,
with any alternative in the top cycle being attainable as a
policy outcome depending on the sequence of votes taken.
Thus, amendment agendas are, in general, not neutral,
because they privilege alternatives appearing later on in
the agenda.'® It is also well known that in the presence of
a Condorcet winner, any sequence of voting will yield the
Condorcet winner as an outcome, regardless of whether
all individuals vote sincerely or all vote sophisticatedly.?
Thus, over the domain &, amendment agendas are neu-
tral: if the collection of ballots an amendment agenda is
given is single-peaked, then so is any relabeling of that
collection, and the outcome of voting will be the Con-
dorcet winner (and the relabeled Condorcet winner) of
each ballot profile.

What is perhaps less well known is that amendment
agendas are highly manipulable at sincere profiles of bal-
lots, even in the presence of a Condorcet winner.?! In this
section, we consider amendment agendas to be choice
functions, ¢4, in which an individual’s ballot dictates
how that individual will vote on any pair of alternatives.

In the presence of a Condorcet winner, assuming
that all individuals vote either sincerely or sophisticat-
edly yields the same outcome. However, the sequence of
votes that individuals cast will differ, and at a sincere
profile of ballots, or sequence of votes, an amendment
agenda is manipulable. To see this, consider the amend-
ment agenda pictured in Figure 1, in which alternatives
x and y are first put to a vote via majority rule, and the

19The last alternative considered in a pairwise vote need only defeat
the winning alternative that preceded it in order to become a policy
outcome. However, an alternative considered first must defeat every
other policy in order to be chosen as a policy outcome.

Sophisticated voting in this context refers to individuals playing
subgame-perfect Nash equilibrium strategies.

2Others have noted that when the behavioral assumption of sincer-
ity or sophistication is not uniformly made across all voters, amend-
ment agendas may no longer be Condorcet consistent. See Denzau,
Rikev, and Shepsle (1985) and Austen-Smith (1987), among others.
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winner is then pitted against z in order to determine the
final outcome. Suppose that there are three individuals
with the following preferences: x Py P1z, y P,zP,x, and
zP3y P3x. This preference profile is single-peaked and is
pictured graphically in Figure 2; it yields y as a Condorcet
winner.

Under a truthful collection of ballots, the amendment
agenda pictured in Figure 1 yields y as an outcome: y
defeats x at the first stage of voting by the votes of Players
2 and 3, and y defeats z at the second stage by Players 1 and
2. Now consider a collection of ballots in which Players 1
and 2 truthfully reveal their preferences over alternatives,
but Player 3 claims to have the preference ordering z P}
x P’ y. Under this ballot profile, our amendment agenda
now yields z as the winner: x defeats y at Stage 1 by
the (sincere) vote of Player 1 and the (insincere) vote of
Player 3, and z defeats x at Stage 2 by the sincere votes
of both Players 2 and 3. Furthermore, this is a beneficial
manipulation by Player 3, as it enables him to attain his
ideal point as the policy outcome.

Clearly the insincere ballot of Player 3 is not single-
peaked with respect to the underlying ordering of alter-
natives. However, without a priori restricting how people
can cast votes, manipulation is endemic to this form of
agenda, even when the majority will is clearly well de-
fined. And we know of no real-world institution that re-
stricts how pairwise votes may be cast. At the same time,
when handed a truthful profile of ballots, the amendment
agenda produces outcomes and sequences of votes that are
consistent with pairwise majority voting. Thus, contrary
to the argument forwarded by Dryzek and List (2003),
satisfying Arrow’s conditions does not “by easy impli-
cation” imply satisfaction of the conditions of Gibbard-
Satterthwaite on single-peaked domains. Pairwise ma-
jority voting is transitive, weakly Paretian and ITA (and
thus, neutral) when a collection of preferences is single-
peaked, and produces outcomes consistent with those
produced by an amendment agenda “choice function” ¢,.
Amendment agendas, and in general any choice function

FIGURE2 A Single-Peaked
Preference Profile




MANIPULATION AND SINGLE-PEAKEDNESS

representing the outcome of a binary voting process, are
not strategy-proof.

Deliberative Democracy

Deliberation within democratic governance has attracted
a great deal of attention in the past two decades. This at-
tention has focused primarily on the potential impact of
deliberation on the quality of democratic decision mak-
ing, broadly construed. For example, deliberative democ-
racy has been forwarded as a means of divining the “best”
choice (Estlund 1997; Estlund et al. 1989) as a legitimating
device (e.g., Cohen 1989; Manin 1987), and as a means
by which individuals’ preferences may be brought more
in line with each other (e.g., Miller 1992). In addition,
some have argued that deliberation is in and of itself a
good thing (e.g., Shapiro 2002).2?

Dryzek and List (2003) have recently extended such
arguments and explored the linkages between delibera-
tive democracy and social choice theory. In many respects,
their arguments provide hope for deliberative democrats
in spite of the generally negative conclusions about the
coexistence of collective rationality and democratic col-
lective choice. The heart of their argument is that delib-
erative decision making may allow individuals within a
group to leverage the underlying common structure of
their individual preferences to choose an outcome that
satisfies desirable normative (e.g., democratic) proper-
ties. The principle example of such a structure is single-
peakedness. Dryzek and List link single-peakedness with
agreement at a meta-level, a notion loosely describing the
agreement by participants “on a common dimension in
terms of which the alternatives are to be conceptualized”
(Dryzek and List 2003, 14).

A key conclusion for Dryzek and List’s purposes is
that preference structuration can eliminate the incentive
for a deliberator to misrepresent his or her preferences at
the point at which the collective is faced with making a
final decision. Claims that structuration may be produced
through deliberation have been forwarded by many schol-
ars, and some empirical evidence supports this claim.?
Our arguments in this article provide some insight into
the conditions that one must impose on the structuration
process to guarantee that it offers no benefit from mis-

22Knight and Johnson (1994) present a critique of the parallels
drawn (particularly as argued by Miller 1992) between preference
aggregation and deliberation.

BTheories discussing the production of structuration through de-
liberation include Mansbridge (1983), Goodin (1986), and Miller
(1992). Empirical studies of the emergence of structuration have
been offered by Radcliff (1993) and Farrar et al. (2010).
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representation and show that these conditions are very
restrictive. Indeed, the conditions are far more restrictive
than has been claimed elsewhere.** Specifically, we have
shown that a nondictatorial decision-making institution
can be ensured to offer no benefit from misrepresentation
by a person or coalition only if the details of the structure
of the individuals’ preferences are written into the rules
of the institution itself (i.e., the institution can utilize the
underlying ordering of alternatives). This is akin to say-
ing that if we wish to design a deliberative institution
that will give individuals the incentive to participate in a
process of collective preference structuration, the institu-
tion must have a priori knowledge of the true structure
of preferences; it must know the true left-right order-
ing of the alternative space before the deliberative process
begins.

The following table illustrates exactly why individu-
als with single-peaked preferences may not want the true
“dimension of conflict” revealed. It depicts three differ-
ent preference profiles that are all single-peaked. Because
each profile is single-peaked and there are three individ-
uals, each profile yields a unique Condorcet winner, or
policy that is the median voter’s ideal point. Consider a
choice function that yields a Condorcet winner whenever
a Condorcet winner exists (presumably, the benefit of
preference structuration is the existence of such a policy).
Thus, for p; it yields z as the outcome, and so on.

What does this choice function yield when it receives
a collection of ballots that does not admit a Condorcet
winner? The table shows that regardless of which out-
come the choice function chooses, the function is always
manipulable by someone at a single-peaked profile of
preferences. For example, if the choice function chooses x
as the outcome when it receives a cyclic profile of ballots,
then the function is manipulable by Person 1 at the (sin-
cere) profile p;. In particular, Person 1 has an incentive to
report that his preferences are x > y > z, when they are
truly x > z > y. By misrepresenting his preferences this
way, he switches the outcome from z (the median voter’s
ideal point) to x (his own ideal point).

In each case, for manipulation to occur, an individ-
ual must submit a ballot that is not single-peaked with
respect to the true ordering of alternatives. In this sense,
if individuals are not constrained to choose only from
the set of ballots that are single-peaked with respect to
precisely the ordering that the deliberative process was
intending to uncover, we cannot guarantee that an indi-
vidual will have no incentive to lie about what he believes

24In addition to Dryzek and List (2003), our results appear to be at
odds with some of the relevant claims of Grofman and Feld (1988),
Miller (1992), and Mackie (2003), among others.
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Pl P2 p3 Cycle
Person 1 X>z>y x> y>z xX>y>z X>y>z
Person 2 y>z>= X Y= x>z y>=z>Xx y>=z>x
Person 3 Z= x>y Z= x>y =y x Z=x>y
x: 1 manipulates p
Outcome Median =z Median=x Median= y y:2 manipulatesp,

z: 3 manipulates p 3

the true dimension of conflict to be, or to claim that the
policy space is two-dimensional, or more complex than it
truly is. In other words, even if we begin with a situation
in which preferences are already structured in a desirable
way, we cannot design an institution that is guaranteed to
truthfully elicit those preferences.

Conclusions

Theorems 2 and 3 imply that one must be careful in in-
terpreting collective will in any real-world policymaking
institution even when preferences are presumed to be single-
peaked. This point is highly relevant for those scholars
who insist that majority rule cycles are infrequent or un-
troubling (e.g., Mackie 2003). Our results directly imply
that—even if preferences are known to be single-peaked
and accordingly admit no cycles—any nondictatorial and
full-range choice institution will necessarily in some situ-
ations provide one or more groups of individuals with the
ability to profit by claiming that preferences are cyclic. It
then follows that appeals to aggregate outcomes as empir-
ical indicators of the collective will are not necessarily well
founded even when the majority will is assumed to ex-
ist. Put another way, the normative and descriptive issues
raised by Arrow’s theorem and the Gibbard-Satterthwaite
theorem are more than “logical exercises,” “abstract limit
cases,” or “mathematical curiosities” dreamed up for the
purpose of scholarly debate, as claimed by some.? Single-
peakedness does not solve the problems raised by Ar-
row’s theorem in the real world because policymaking
institutions are generally not neutral. Finally, and in very
practical terms, single-peakedness does not eliminate the
possibility of gains through strategic manipulation within
real-world institutions, because few (if any) policymaking
institutions are dictatorial, and few (if any) policymak-
ing institutions limit the preferences that individuals and
groups can claim to have.

%5See Mackie (2003, 156, 192).
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