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Abstract

Kenneth J. Arrow was one of the most important intellectuals of the
twentieth century, and his “impossibility theorem” is arguably the starting
point of modern, axiomatic social choice theory. In this review,we begin with
a brief discussion of Arrow’s theorem and subsequent work that extended
the result.We then discuss its implications for voting and constitutional sys-
tems, including a number of seminal results—both positive and negative—
that characterize what such systems can accomplish and why.We then depart
from this narrow interpretation of the result to consider more varied institu-
tional design questions such as apportionment and geographical districting.
Following this, we address the theorem’s implications for measurement of
concepts of fundamental interest to political science such as justice and in-
equality. Finally, we address current work applying social choice concepts
and the axiomatic method to data analysis more generally.
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I believe that most of the arguments against “quantitizing” or “measuring” the “qualitative” variables
encountered in the social sciences stem from ignorance of how flexible the concept “quantity” is, and
how indefinite the lines between quantity and quality. Such arguments are particularly suspect when it
is asserted in one sentence that a particular variable is “essentially qualitative” and in the next that the
adjectives “more” or “less” can be predicated of it.

–Herbert Simon (1953, p. 513, fn.13)

1. INTRODUCTION

Kenneth J. Arrow was one of the most important intellectuals of the twentieth century. Arrow
made numerous contributions to social science. However, his impossibility theorem (Arrow 1951,
1963) represents the starting point of modern social choice theory, and the axiomatic method Ar-
row employed in the presentation and proof of the impossibility theorem represents a cornerstone
of the modern theory of measurement in social science.1

Specifically, Arrow laid out a set of prescriptive and normatively defensible axioms that a rea-
sonably democratic procedure for evaluating collective preference should satisfy. He then showed
that no such procedure exists; any method must violate at least one of the axioms. Arrow’s formal-
ization of collective preference and the axioms governing democratic decision making launched
the modern field of social choice and set the course for its development. In the years following
the 1951 publication of Social Choice and Individual Values, Arrow’s original axioms were extended,
modified, and weakened, and the field branched into new terrain as scholars applied the axiomatic
approach to problems far removed from voting theory.

The work we discuss follows in Arrow’s tradition by aiming to apply axiomatic and
measurement-theoretic techniques to fundamental political and societal problems. While (we
hope) most political scientists are familiar with the general thrust of Arrow’s theorem, few have en-
counteredmuch of the body of work that Arrow’s theorem inspired.This is unfortunate, because—
like the theorem itself—much of this work grapples with problems that are of paramount impor-
tance to political scientists, in both practical and theoretical terms.

These problems include questions of how to apportion legislative seats to states and parties;
how to measure concepts such as representation, fairness, and inequality; how to construct rules
that are immune to strategic behavior, such as gerrymandering; how to design algorithms that
allocate scarce resources like housing; and how to design stable constitutions (to name a few).
And while the term social choice theory typically conjures to mind the process of aggregating
individual preferences into a collective preference, the mathematical generality of social choice–
theoretic approaches to aggregation renders many of the field’s results directly applicable to topics
far outside the realm of individual and collective preference. Examples include devising measures
of network centrality, community detection algorithms, and ranking algorithms for search engines.

To introduce the reader to the scope of topics that social choice theory addresses—a litera-
ture that has been developed over the half century since Arrow published his result—we have
chosen breadth over depth. We begin with a brief discussion of Arrow’s theorem (Section 2) and
quickly move to a large body of work that directly extends and speaks to Arrow’s original results
(Section 3). Section 4 examines properties of voting and constitutional systems. This large and
well-known body of work attacks the problem of institutional design axiomatically and provides
a number of results—both positive and negative—that characterize what our systems can accom-
plish and why. Section 5 moves away from the aggregation of preferences to survey work that

1Of course, other scholars published seminal results at the same time, including Duncan Black’s median voter
theorem (see sidebar titled Single-Peakedness and Black’s Theorem) and Kenneth May’s axiomatic character-
ization of majority rule (see Theorem 6, below).
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tackles institutional design questions directly related to fairness, such as how to design systems of
apportionment and geographical districting. Section 6 moves from the question of institutional
design to the measurement of normative concepts of fundamental relevance to politics; we focus
on justice and inequality. Finally, Section 7 discusses the applicability of social choice–theoretic
concepts to the aggregation of data, both “big” and small, into numerical measures.We have struc-
tured the sections so that—after a brief introduction to our notation—readers can jump to any
topic of interest. And we have tried to make our exposition broadly accessible to a nontechnical
audience, while retaining enough formalization to make our points clearly.

We hope readers will draw two main conclusions from this review. First, Arrow’s theorem tells
us that, for many of the types of problems and applications outlined above, there is no correct
answer (or, perhaps more accurately, there may be many correct answers). Second, the axiomatic
approach utilized by Arrow provides a foundation for constructing and comparing the various
possible ways to solve these problems. Accordingly, our hope is that this article will open a broader
dialogue between theorists working on these types of problems and political scientists actively
employing thesemeasures and concepts in their research.At the very least,we hope that our survey
of “social choice since Arrow”will provide political scientists with some insight into the properties
of the measures and concepts they regularly utilize, and inspiration for devising and utilizing new
measures. Before continuing, we note that we are of course not the first to survey these literatures.
In addition to the many excellent reviews we cite throughout, we highly recommend the reviews
by Plott (1976), Sen (1986), Austen-Smith & Banks (1999, 2004), and List (2013).

2. ARROW’S IMPOSSIBILITY THEOREM

The starting point of Arrow’s theorem is a finite set of k ≥ 3 alternatives that must be ranked
by a group containing n ≥ 2 people. (See sidebar titled Preferences as Criteria for an alternative
interpretation of this setting.) We denote the set of alternatives by X and the set of individuals by
N . Each person i ∈ N ranks the alternatives in X according to an individual preference ordering,
and this ranking is denoted �i for person i ∈ N . If person i likes alternative x ∈ X as much as or
more than alternative y ∈ X , we write x �i y. If he likes x strictly more than y we write x �i y, and
if he is indifferent we write x ∼i y. Each individual i is presumed to be rational in the sense that his
preference relation is both complete (i.e., x �i y or y �i x or both) and transitive (i.e., if x �i y and
y �i z, then x �i z). Thus, the ranking �i is a weak ordering of the alternatives in X , and the set of
all weak orderings of X is denoted by R. Finally, we denote the list, or profile, of all individuals’
preferences by ρ = (�1,�2, . . . ,�n ).

Arrow’s theorem focuses on preference aggregation rules. These are simply functions that take
the preference profile ρ as an input and produce a collective preference relation,�, that compares
the alternatives. An arbitrary preference aggregation rule is denoted by f , so that f (ρ ) describes

PREFERENCES AS CRITERIA

Much of the discussion about Arrow’s theorem has focused on the interpretation of the axioms within, and the
implications of the result for, preference aggregation through democratic institutions, such as elections and leg-
islatures. However, as we see in Sections 5 and 7, one can interpret any individual’s “preferences” more generally
as any ordering of the alternatives. That is, there is nothing in the axioms or the theorem that requires that the
criteria being aggregated actually represent preferences. Taking a more general view of the inputs makes clearer
the connections between Arrow’s work and applied problems such as apportionment, gerrymandering, and data
aggregation. This is discussed in greater detail by Patty & Penn (2014, ch. 3).
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the group’s preferences over the alternatives when the individual preferences are as described by
ρ. We denote the preference relation returned by f at ρ by � f (ρ ), so that x � f (ρ ) y implies that
x is ranked at least as highly as y by the social preference relation returned when the profile of
individual preferences is ρ ∈ Rn. Finally, Arrow requires that f return a social preference relation
for all possible preference orderings ρ—this requirement is referred to as universal domain.

2.1. The Axiomatic Method

Arrow lays out four simple axioms that he argues any reasonable aggregation rule should satisfy.He
then proves that these axioms are incompatible with each other; that no rule can simultaneously
satisfy all four. In so doing, his result implies that any aggregation rule—regardless of what is being
aggregated or for what purpose—must violate at least one of these axioms. Put differently, every
democratic institution, be it electoral, legislative, administrative, or judicial in character, violates
at least one of these axioms. We now define each of these four axioms in turn.

� Pareto. Arrow’s first axiom requires that the aggregation rule be minimally responsive to
the preferences of the individuals, in that it respects a unanimity condition. More formally,
an aggregation rule f satisfies Pareto if, whenever every individual i strictly prefers x to y,
the aggregation rule f ranks x strictly higher than y.

� Independence of irrelevant alternatives. Arrow’s second axiom requires that the aggre-
gation method should not consider irrelevant alternatives when comparing any pair of al-
ternatives. Specifically, the independence of irrelevant alternatives (IIA) axiom requires that
the group members’ preferences about some alternative c not affect how the aggregation
rule f ranks two different alternatives, a �= c and b �= c.

� Transitivity.Arrow’s third condition focuses on the ability of a preference aggregation rule
to generate an unambiguous winner (or a collection of unambiguous winners, if there is a
tie). An aggregation rule that generates the social ranking x � y, y � z, and z � x (referred
to as a cycle) does not provide an unambiguously “best” alternative when comparing x, y,
and z. Arrow’s transitivity axiom, requiring that f produce a transitive social ordering, rules
out this possibility and more: If f produces an ordering in which x � y and y � z, then it
must also be the case that x � z.

� No dictator. Arrow’s final axiom requires that the preference aggregation rule be respon-
sive to the preferences of more than one person. An aggregation rule f is “dictatorial” if
there is one particular voter whose individual strict preferences always determine the social
preference ordering, irrespective of the preferences of the other voters. Formally, if a rule is
dictatorial then there exists one voter i such that every time x �i y (i.e., the dictator i strictly
prefers x to y), the aggregation rule f produces a strict ranking x � y. An aggregation rule
f satisfies no dictator if it is not dictatorial.

2.2. Arrow’s Impossibility Theorem

With the four axioms of Pareto, IIA, transitivity, and no dictator defined and described, we are
now ready to state Arrow’s theorem (1951, 1963).

Theorem 1 (Arrow 1951, 1963). With three or more alternatives, any aggregation rule
f satisfying universal domain, Pareto, IIA, and transitivity must be dictatorial.

Arrow’s theorem tells us that if a groupwishes to design a preference aggregation rule that is Pareto
efficient, transitive, and independent of irrelevant alternatives, and if we place no restrictions on
the preferences that individuals may have, then the rule must grant all decision-making authority
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to a single individual. Put another way, any aggregation rule that is not dictatorial must violate
transitivity, Pareto, or IIA. We now turn to four important literatures that directly emerged in
response to the theorem.

3. ARROW’S DESCENDANTS

In the 25 years following the first publication of Social Choice and Individual Values, several im-
portant threads of inquiry quickly emerged that extended the theorem to account for weakenings
of Arrow’s axioms. These included removing the Pareto principle (Wilson 1972) and replacing
transitivity with weaker collective rationality requirements (Gibbard 2014, Brown 1975). In this
section, we focus on three of these lines of work: altering IIA to allow for cardinal (as opposed to
ordinal) preferences, allowing for strategic individual behavior through preference misrepresen-
tation, and requiring the aggregation rule to respond to a richer set of information (in the case we
consider, individual rights). Originally motivated to test the limits of Arrow’s conclusions, these
literatures succeeded in pinpointing many of the general mechanisms driving Arrow’s result, and
highlighted the sweeping generality of the theorem. We briefly review these early extensions in
order to set the stage for subsequent developments.

3.1. Cardinal Preferences

A common criticism of Arrow’s theorem was that it allows the preference aggregation rule f to
respond only to ordinal information about voters’ preferences, as the preferences of the individuals
are expressed as orderings of the alternatives. Sen (1970a, pp. 118–30) partially answered this
objection by showing that Arrow’s result can be extended to allow for cardinal utilities. That is,
instead of assuming that each individual simply ranks these alternatives, Sen’s approach allows
every individual i ∈ N to assign a number to each alternative, ui(x), with ui(x) > ui(y) meaning
that i likes xmore than y. This approach allows the aggregation rule to respond to the cardinality,
or strength, of individuals’ preferences over the alternatives.

To capture this possibility, we write u = (u1, . . . , un ) to denote a profile of utility functions,
one for each individual. Then, letting U ≡ RX denote the set of all utility functions on X and
Un denote possible profiles of n utility functions on X , we define an aggregation functional as a
mapping F : Un → R that assigns each possible profile of utility functions to an ordinal ranking
of the alternatives. Extending Arrow’s theorem to a cardinal preference setting requires that we
modify Arrow’s axioms as follows.

� Pareto.An aggregation functional F satisfies Pareto if ui(x) > ui(y) for all i ∈ N implies that
x �F (u) y.

� Cardinal IIA. An aggregation functional F satisfies cardinal IIA if, for any pair of utility
profiles, u, v ∈ Un, and any pair of alternatives x, y ∈ X such that ui(x) = vi(x) and ui(y) =
vi(y), x �F (u) y ⇔ x �F (v) y. In words, if individual utilities for x and y are unchanged, then
the social ranking of x and y should be unchanged.

� Transitivity. An aggregation functional F satisfies transitivity if, for every utility profile
u ∈ Un, F (u) is a transitive ordering of the alternatives.

� No dictator.An aggregation functional F is dictatorial if there exists i ∈ N such that ui(x) >

ui(y) implies that x �F (u) y. F satisfies no dictator if it is not dictatorial.

Moving from ordinal to cardinal preferences requires one to consider how to compare dif-
ferent utility functions that are ordinally equivalent (i.e., that rank the alternatives in the same
way). d’Aspremont &Gevers (2002) provide an excellent review of the large literature considering
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different ways to do this. However, due to space constraints, we focus only on the approach taken
by Sen (1970a).

Individuals’ utilities are cardinally measurable and noncomparable when any pair of utility
functions ui, vi ∈ U are considered to be the same as (or equivalent to) each other if there is a real
number ai ∈ R and a positive real number bi ∈ R++ such that vi(x) = ai + bi · ui(x) for all x ∈ X .
Such an assumption implies that themagnitude of one person’s utility (i.e., the size of differences in
their utility between any pair of alternatives) is not comparable to another’s. Then, an aggregation
functional F is said to respect noncomparability if for any pair of profiles of utility functions u, v ∈
Un for which there exists (a1, . . . , an ) ∈ Rn and (b1, . . . , bn ) ∈ Rn

++ such that vi(x) = ai + biui(x) for
all i ∈ N and x ∈ X ,F (u) = F (v).With these definitions in hand, Sen (1970a) proves the following
extension of Arrow’s theorem.

Theorem 2 (Sen 1970a). Any aggregation functional F satisfying universal domain,
Pareto, cardinal IIA, and transitivity while respecting noncomparability must be dictatorial.

Sen’s theorem illustrates that Arrow’s conclusions are not the result of ignoring cardinal infor-
mation about (say) the strengths of individuals’ preferences. Rather, as we will see in Section 6,
Sen’s result indicates that the impossibility theorem is about comparability of individuals’ pref-
erences. As Blackorby & Bossert (2008, p. 423) succinctly describe the situation, “[T]he most
promising route of escape from the negative conclusion of Arrow’s theorem is to consider infor-
mational environments that allow for interpersonal comparisons of well-being.”We build on this
point in a more applied fashion elsewhere, discussing the appeal and vulnerabilities of this ap-
proach (Patty & Penn 2015a, pp. 62–67). The principal weaknesses of taking this route are the
Gibbard-Satterthwaite and Muller-Satterthwaite theorems, which are discussed next.

3.2. Strategic Behavior

Arrow’s theorem is concerned with aggregation rules, which return social preference orderings.
Of course, many democratic systems focus solely on producing a final winner or chosen out-
come. Such institutions are more parsimoniously represented by a choice correspondence that
maps each preference profile into a nonempty subset of the set of alternatives. Thus, letting X
denote the nonempty subsets of X , we denote a choice correspondence by C : Rn → X . When
a choice correspondence C selects exactly one alternative for each preference profile (of course,
the alternative it selects can differ across various preference profiles), then C is referred to as
a choice function. For any choice function C, the number of choices possible under C is de-
fined as the number of alternatives in X for which there exists at least one preference profile,
ρ ∈ Rn, at which C returns the alternative. [Formally, this is the cardinality of the following set:
{x ∈ X : ∃ρx ∈ Rn such that C(ρx ) = x}.] Finally, a choice correspondenceC satisfies universal do-
main if it returns a nonempty set of alternatives for every possible preference profile (i.e., for all
ρ ∈ Rn,C(ρ ) �= ∅).

Regardless of whether we are considering aggregation rules or choice correspondences, a prac-
tical challenge for any attempt to make choices on the basis of individuals’ preferences is how to
elicit these preferences from the individuals. That is, real-world rules, such as voting systems,
must rely on reported preferences (e.g., ballots) rather than individuals’ true latent preferences.
This line of research asks how and when an individual might have an incentive to misreport their
preferences.

To represent this formally, suppose that each individual i ∈ N reports a preference order-
ing, bi ∈ R (where b stands for “ballot”). This report does not need to be truthful—individual
i’s truthful ballot is �i, defined previously. After all individuals have submitted their ballots,
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SOCIAL CHOICE, REVELATION, AND MECHANISM DESIGN

Mechanism design refers to the study of how and whether incentives can be structured so as to induce individuals
to achieve some goal(s) with respect to the individuals’ choices. The mechanism that structures the incentives is
essentially a game between the players, paired with a solution concept for that game, such as Nash equilibrium
(Nash, Jr. 1950). Generally, the goals depend on information known only to the individuals (e.g., their individual
preferences over alternatives, or “types”), so the general purpose of mechanism design is to incentivize individuals
to reveal this information. A key result in this field, due in various ways to Gibbard (1973), Dasgupta et al. (1979),
and Myerson (1979), is the revelation principle, which essentially states that it is sufficient to consider games in
which the players only report their type (though not necessarily truthfully). An incentive-compatible mechanism is
a game in which it is in the players’ interests to report their types truthfully. Accordingly, an incentive-compatible
mechanism is equivalent to a choice function. Because of this, incentive-compatible mechanisms—and what they
can achieve or, in the parlance of the literature, implement—are described and constrained by the results of social
choice (most famously, the Gibbard-Satterthwaite theorem and, by implication, Arrow’s theorem). For a very clear
discussion of this fundamental relationship, see Austen-Smith & Banks (1999, pp. 187–94).

b = (b1, . . . , bn ), the choice function C selects the outcome, C(b) ∈ X . With this in hand, given
any preference profile ρ ∈ Rn, an individual i ∈ N has an incentive to manipulate C at ρ if there
exists a ballot bi �=�i such that

C((�1, . . . ,�i−1, bi,�i+1, . . . ,�n )) �i C(ρ ).

A choice function C for which there exists an individual i ∈ N and preference profile ρ ∈ R such
that i has an incentive to manipulateC at ρ is referred to as manipulable. Any choice function that
is not manipulable is referred to as strategy-proof.

A strategy-proof choice function is consistent with every individual truthfully reporting (or
“revealing”—see sidebar titled Social Choice, Revelation, and Mechanism Design) their prefer-
ences. If the choice function is manipulable, then there may be reason to suspect that one or more
individuals misreported their preferences.

3.2.1. The Gibbard-Satterthwaite theorem. The key result in this literature was proved in-
dependently by Gibbard (1973) and Satterthwaite (1975).Gibbard and Satterthwaite demonstrate
that if at least three different outcomes are possible—so that the range of the choice function con-
tains at least three elements—dictatorial choice functions are the only ones that are strategy-proof.
In other words, there is no nondictatorial choice function that is strategy-proof.

Theorem 3 (Gibbard 1973, Satterthwaite 1975). With universal domain and three or
more outcomes possible, any strategy-proof choice function is dictatorial.

Interpreting choice functions as voting systems, the Gibbard-Satterthwaite theorem proves
that strategic voting (i.e., the possibility of benefiting from voting against one’s true preferences)
is endemic to all deterministic voting systems when there are at least three alternatives that can
be chosen. Of course, the possibility that individuals might have an incentive to cast an insincere
ballot is well known—the surprising aspect of the Gibbard-Satterthwaite theorem is its scope.
Specifically, every voting system can create an incentive to vote insincerely unless (a) there is only
one voter whose vote matters or (b) there are only one or two alternatives that the system can
select or (c) certain individual preferences are disallowed (i.e., universal domain is violated).
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MONOTONICITY AND IMPLEMENTABILITY OF CHOICE CORRESPONDENCES

A fundamental result connecting social choice theory and mechanism design is due to Maskin (1999) (originally
circulated in 1977). A choice correspondence C is implementable in Nash equilibrium if there exists a game
γ : Un → X such that, for all u ∈ Un,C(u) = NEγ (u), whereNEγ (u) denotes the set of Nash equilibrium outcomes
for game γ , given the utility profile u. If C is implementable in Nash equilibrium, then there exists a game for
which the Nash equilibrium outcomes of the game correspond to the outcomes prescribed byC. Maskin’s theorem
establishes that a very strong monotonicity condition is necessary for implementability in Nash equilibrium, and
consequently results concerning Nash implementation are generally negative. Refining the equilibrium concept—
for example, to undominated Nash—leads to more permissive results (Palfrey & Srivastava 1991).

3.2.2. The links between Arrow and Gibbard-Satterthwaite. Despite the differences be-
tween the settings for the two theorems, the Gibbard-Satterthwaite theorem and Arrow’s theorem
are mathematically similar. As an illustration of this, Reny (2001) presents two clear and side-by-
side proofs, one for Arrow’s theorem and one for the Gibbard-Satterthwaite theorem, showing
that the two results can be proved using the same constructive method. Similarly, though some-
what more abstractly, Eliaz (2004) also demonstrates how the two theorems can be derived from
a common and more general “metatheorem” on social aggregators.

3.2.3. The Muller-Satterthwaite theorem. Shortly after Gibbard (1973) and Satterthwaite
(1975) proved their theorems, Muller & Satterthwaite (1977) proved that when individual pref-
erences are strict (so that no individual is indifferent between any two alternatives), strategy-
proofness of a choice function C is equivalent to an intuitive, but strong, monotonicity condition
(see sidebar titled Monotonicity and Implementability of Choice Correspondences). Specifically,
a choice functionC satisfies strong positive association if, for any pair of ballot profiles b, b′ ∈ Rn and
any pair of alternatives x, y ∈ X such that every voter who prefers x to y in ρ also prefers x to y
in ρ ′ (i.e., x �bi y ⇒ x �b′i y),C(ρ ) = x implies C(ρ ′ ) = x. In other words, if x is chosen from one
ballot profile b, and another profile b′ exists in which x has not declined relative to any other al-
ternative y for any individual, strong positive association requires that x also be chosen at b′. The
equivalence of strategy-proofness and strong positive association yields the following corollary of
the Gibbard-Satterthwaite theorem.

Theorem 4 (Muller & Satterthwaite 1977). With (strict) universal domain and three
or more outcomes possible, any choice function satisfying strong positive association is
dictatorial.

3.3. Individual Rights

Arrow’s axioms are a sparse representation of the rich process of collective decision making, and
many of the first criticisms Arrow faced when presenting his result concerned his neglect of other,
normatively essential, values. This, in combination with debates about the IIA axiom, prompted
scholars to develop and incorporate alternative desiderata into the framework. One thread of this
work is concerned with how to bring individual liberty and/or rights into the Arrovian framework.
We now present a seminal contribution to this literature. Suzumura (2011) provides a thorough
review of these early debates and the progression of social choice approaches to individual rights.

To capture the notion of an individual i’s rights within a social choice framework, suppose that
two alternatives, x and y, differ only with respect to features that are private to i, where “private to
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i” describes aspects of the alternatives about which no individual other than i should be accorded
a say. In this case, the choice between x and y is said to be within i’s protected sphere, denoted
by Di ⊆ X × X [for obvious reasons, if (x, y) ∈ Di, then (y, x) ∈ Di as well]. Thus, an individual’s
protected sphere is a collection of pairs of alternatives between which that person’s preference
should be respected (i.e., protected). Each individual i’s set of protected spheres is exogenously
given—they represent the context of the social choice problem. Given any individual i, a social
choice correspondenceC is said to respect i’s individual rights if, for all preference profiles ρ ∈ Rn,

[
(x, y) ∈ Di and x �i y

] ⇒ y �∈ C(ρ ).

With this notion of protecting rights in hand, Sen (1970b) defines the following two axioms for
choice correspondences.

� Minimal liberalism.A choice correspondenceC respects minimal liberalism if there are at
least two individuals, i, j ∈ N , for whom Di �= ∅ and Dj �= ∅, such that C respects both i’s
and j’s individual rights.

� Pareto. A choice correspondence C satisfies Pareto if, for all preference profiles ρ ∈ Rn, if
x �i y for all i ∈ N , then y �∈ C(ρ ).

Theorem 5 (Sen 1970b). There exists no social choice correspondence C satisfying uni-
versal domain, minimal liberalism, and Pareto.

Sen’s theorem has broad implications. First, it is an impossibility result requiring neither tran-
sitivity nor IIA.Many, if not most, critiques of Arrow’s theorem have aimed at one or both of those
axioms. Sen’s result shows that we can replace both with a different normatively defensible axiom
and still obtain a contradiction with Pareto.

This raises the second implication of Sen’s theorem. Specifically, the result presents a challenge
to the Pareto principle itself and, accordingly, all welfarist theories of justice and social choice
(see Section 6): Any social choice correspondence C satisfying universal domain and Pareto can
respect the individual rights of at most one individual. In other words, the theorem demonstrates
that protecting the rights of multiple individuals is inherently at odds with even the most minimal
notions of utilitarianism. Or, equivalently, it illustrates that liberalism and utilitarianism can be
mutually consistent only if one restricts the set of permissible individual preferences.

Sen’s inquiry was subsequently extended by Gibbard (1974), who proves a generalization of
Sen’s theorem within a richer framework of choices that explicitly captures the notion of social
outcomes resulting from both private and public decisions. Space limitations preclude a full pre-
sentation of Gibbard’s result, but a short description is warranted. Gibbard’s result complements
Sen’s in two important ways. First, Gibbard’s definition of rights protection is more concrete than
is Sen’s—it answers some objections to Sen’s notion of minimal liberalism [see Suzumura (2011),
sections 3 and 4, for discussion of these objections]. Second, Gibbard’s result does not require the
Pareto axiom and is therefore, on its face, not necessarily inconsistent with welfarism.

4. VOTING AND CONSTITUTIONAL DESIGN

Preference aggregation rules are conceptually similar to voting procedures in which ballots (pref-
erences) are forced through an algorithm that chooses either a winner or a social ranking of candi-
dates.Given that a vote is the most natural way of eliciting a collective preference, it is not surpris-
ing that many social choice–theoretic results concern voting systems.Using the terminology from
above, we conceive of a voting system as a choice correspondenceC that maps a preference profile
into a set of outcomes (if the set is multivalued, the elements in it are considered “tied”). The
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SINGLE-PEAKEDNESS AND BLACK’S THEOREM

Formal models of voting often assume that individual preferences are single-peaked. This assumption presumes
that there is some underlying ordering of the alternatives, x1 < x2 < · · · < xk, such that each individual i has a
favorite policy (ideal point) xi = xt , and that person i’s preferences are strictly decreasing as policies move away
from i’s ideal point: xi �i xt+1 �i xt+2 . . . and xi �i xt−1 �i xt−2 . . . . In this setting, Black’s median voter theorem
(Black 1948) implies that a majority vote over pairs of alternatives yields a transitive social preference ordering
when there is an odd number of voters (and a quasitransitive ordering when n is even). Furthermore, Black proves
that any median of the individuals’ ideal points (ordered according to the underlying ordering of alternatives) is
weakly majority preferred to all other alternatives.

Gibbard-Satterthwaite theorem tells us that every (single-valued) voting system is manipulable
(for multivalued systems, see Duggan & Schwartz 2000), and the Muller-Satterthwaite theorem
tells us that every single-valued voting system violates a natural monotonicity condition, but much
of this literature is more constructive, characterizing voting systems by the axioms they do and
don’t satisfy. A more detailed review is provided by Brams & Fishburn (2002).

4.1. Majoritarian Methods of Voting

The most classic result on voting procedures is by May (1952), who axiomatized plurality rule
over pairs of alternatives. Specifically, May considered the following three axioms.

� Anonymity.A choice correspondenceC satisfies anonymity if it treats all individuals equally.
� Neutrality.A choice correspondenceC satisfies neutrality if it treats all alternatives equally.
� Positive responsiveness. A choice correspondence C satisfies positive responsiveness if

whenever an alternative x is winning or tied for the lead under one profile, ρ [i.e., x ∈ C(ρ )],
and under a different profile, ρ ′, support for x has only increased among the voters, then x
must be the unique winner under ρ ′ [x = C(ρ ′ )].

Theorem 6 (May 1952). When |X | = 2, plurality rule uniquely satisfies anonymity, neu-
trality, and positive responsiveness.

WhileMay (1952) and Black (1948) provided important defenses of majority and plurality rules
(see sidebar titled Single-Peakedness and Black’s Theorem), Dasgupta & Maskin (2008) more re-
cently refined a long literature into a very specific defense ofmajority rule.They begin with a result
similar to Arrow’s theorem, proving that no voting rule satisfies Pareto, anonymity, IIA, neutral-
ity, and decisiveness (the requirement that the rule be discriminating in the sense of picking a
unique winner). However, like Arrow’s theorem, this result depends on the assumption of univer-
sal domain. There are smaller classes of preference domains, such as the domain of single-peaked
preferences, described next, in which aggregation and voting rules can be designed to satisfy all of
these axioms.Dasgupta&Maskin (2008) then show thatmajority rule is the unique voting rule that
works well (in the sense of satisfying the above axioms) on the biggest class of preference domains.

4.2. Positional Methods of Voting

Majority rule is generally considered desirable from an axiomatic perspective when preferences
are single-peaked, but it presents practical limitations. Taking a vote over all pairs of alternatives is
logistically challenging, as is requiring individuals to submit entire rankings of the alternatives in
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VOTING PARADOXES

A voting paradox occurs when a seemingly sensible voting procedure produces undesirable outcomes. Much of the
axiomatic literature on voting systems concerns a procedure’s susceptibility to paradoxes, and violations of many of
the axioms we have considered thus far can be reformulated as paradoxes. Some other well-studied examples are
the following:

� The no-show paradox. By choosing to abstain from voting, a voter can obtain a strictly better outcome for
himself.

� The preference inversion paradox. Reversing all individuals’ preference orderings—making each person’s last
choice first, and so on—leaves the social ranking of alternatives (or unique winning alternative) unchanged.

� Condorcet (in)consistency. A Condorcet winner (an alternative that defeats every other alternative in a head-
to-head contest) exists, but the rule fails to select it.

� The additional support paradox. All else equal, additional support for an alternative causes that alternative to
lose.

Nurmi (1999) provides an excellent and extensive review of voting paradoxes and “how to deal with them.”

question. A family of voting rules that potentially offer a compromise between these two extremes
are the positional methods of voting. A positional voting method asks each voter to strictly rank
all or some of the candidates under consideration. For each voter’s ballot, the method then assigns
a score to each candidate, depending on the voter’s ranking. Given all of the voters’ ballots, the
final overall ranking of the candidates is determined by tallying the scores. These methods differ
in the particular scores they assign to each position. Plurality rule, one of the most commonly
used voting systems in the world, assigns a score of 1 to the top-ranked candidate on each voter’s
ballot and 0 to all other candidates. Borda count, another well-known system, assigns k− 1 points
to each ballot’s top-ranked candidate, k− 2 to each second-ranked candidate, and so on.

Positional methods are guaranteed to yield a transitive social preference ordering, because they
assign point totals to each alternative. However, Saari (1989) shows that even within this class of
rules there is ample opportunity for potentially unwelcome outcomes (see sidebar titled Voting
Paradoxes). For example, all positional rules suffer from the no-show paradox (Saari 2011), and all
positional rules are Condorcet inconsistent (Gärdenfors 1973).A number of authors have analyzed
these rules axiomatically and have shown that some surprising properties are uniquely satisfied by
the Borda count among the class of positional rules (see Gärdenfors 1973, Young 1974, Saari 1990,
2000, Saari & Barney 2003, Emerson 2013).

4.3. Multistage and “Multiple” Rules

Multistage voting procedures can utilize either ranked ballots (such as the alternative vote) or
unranked, categorical ballots (such as plurality rule with runoff ). In both cases, candidates with
the lowest levels of support are sequentially eliminated. Typically, the voters who had initially
supported a losing candidate are able to transfer their vote to a different candidate, either in a
second round of voting or during the vote tallying process.Despite the popularity of these systems,
it is well known that they are vulnerable to the additional support paradox, a particularly noxious
type of monotonicity violation. The problem occurs because first-place votes affect the order of
elimination; increased support for a winner can alter which challenger that winner faces in round 2,
thus turning the winner into a loser.This problemwas first identified by Doron&Kronick (1977).
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Brams & Fishburn (1984) demonstrate different problems that can arise if some voters truncate
their rankings; under transferable vote systems, voters may materially benefit by submitting a
truncated ballot.

Under a multiple rule (Saari & Van Newenhizen 1988), a voter “ranks the candidates and then
selects a positional rule to tally the ballot from two or more choices” (Saari 2010, p. 218). The
most well-known examples of such rules are the approval vote and the cumulative vote. Under
approval voting, a voter approves or disapproves of each candidate, and candidates receive one
point for each approval. Under the cumulative vote, voters may distribute an integer number of
votes across the candidates.Casella (2005) has introduced a voting system similar to the cumulative
vote, but over pairs of alternatives in multiple elections. She demonstrates that strategic behavior
induced under her system of storable votes can generate minority victories, and that the system
can help elicit voter preference intensities. A similar system termed qualitative voting has been
studied by Hortala-Vallve (2012).

Nonstrategic analysis of multiple rules can pose challenges, because different voters with the
same preference orderings may choose to mark their ballots differently (Saari 2011). Brams and
Fishburn have written much on the approval vote and have independently and jointly proved that
it satisfies a number of desirable properties. Many of these results assume a restricted domain of
preferences termed dichotomous preferences, in which each voter partitions the set of alterna-
tives into “good/acceptable” and “bad/unacceptable” categories. Brams & Fishburn (1978) show
that approval voting equals the Condorcet rule (a rule choosing the Condorcet winner or win-
ners) when preferences are dichotomous. Building on work by Fishburn (1978), Vorsatz (2007)
shows, among other things, that a choice correspondence satisfies anonymity, neutrality, strategy-
proofness, and monotonicity if and only if it is the approval vote. He interprets his result as an
extension of May’s theorem.

4.4. Constitutional Consistency and Self-Selectivity

So far we have discussed voting procedures in terms of their ability to satisfy certain axioms re-
garding their responsiveness to individual preferences (e.g., anonymity, neutrality, monotonicity,
Condorcet consistency).A different line of work steps back to analyze the choice of procedure itself
and asks whether a procedure that is chosen to choose among procedures that will choose among
alternatives will choose itself. This self-referential consistency property was notably characterized
by Koray (2000), who showed that with sufficiently rich preferences, the only self-selective choice
functions are dictatorial (thus providing a different route to the Arrow and Gibbard-Satterthwaite
theorems). Other studies have explored similar themes, relaxing or altering Koray’s framework to
bypass his impossibility result. Barberà & Jackson (2004) use a weaker notion of self-stability in
a different choice environment, whereby under a self-stable constitution, society would not vote
to change the constitution. They show that such rules may or may not exist and that majority
rule possesses some special properties with respect to self-stability. Koray & Slinko (2008) extend
Koray’s original result, finding that under a suitably restricted environment, nondictatorial self-
selective rules exist. Alternative approaches can be found in the work of Barberà & Beviá (2002),
Houy (2004), and Bhattacharya (2018).

5. FAIRNESS: APPORTIONMENT AND GERRYMANDERING

There is a large literature concerned with axiomatic measures of fairness (Thomson 2011 pro-
vides an excellent review).We focus here on two important practical problems regarding political
fairness: apportionment and gerrymandering.
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5.1. Apportionment

A fundamental and practical question in democratic institutional design is how to apportion seats
in a legislative body. This question comes up in multiple forms—for example, in proportional
representation systems, seats must be apportioned across the various political parties based on the
number of votes they receive, and in district-based systems, seats must be apportioned across the
districts.

The basic problem can be represented as follows. Each of s ≥ 3 states (or parties) has a popula-
tion (or vote) share denoted by pi ∈ [0, 1] for i ∈ {1, . . . , s} with ∑s

i=1 pi = 1.We denote the vector
of all population shares by p = (p1, . . . , ps ). Based on p, each of the s states must be assigned an
integer number of seats, denoted by ai ∈ {0, . . . ,H}, where H ≥ 1 is an integer representing the
total number of seats to be apportioned. Letting Ps denote the set of all population shares for the
s states (i.e., the s − 1 dimensional simplex), we define an apportionment method as a correspon-
dence A : Ps × Z++ ⇒ {0, 1, . . . ,∞}s such that all seats are assigned:

∑s
i=1M(p,H )i = H .

Multiple approaches to this problem have been proposed through the years. The seminal ax-
iomatic contribution to apportionment was provided by Balinski &Young (2001),who defined two
desirable properties for apportionment methods. The first of these, referred to as quota, requires
that the method give each state its fair share of seats rounded either up or down, where “fair” is
defined as the (typically noninteger) number of seats that would make the state’s proportion of the
legislature equal to its proportion of the population. Formally, quota is defined as follows.

Definition 1. An apportionment methodM satisfies quota if, for all p ∈ Ps andH ∈ Z++,

M(p,H )i ∈ {�piH�, �piH�} .

A second desirable property for apportionment methods is that if state i’s population share goes
up and state j’s goes down, then state i does not receive fewer seats while state j receives more
seats. This property, known as population monotonicity, is formally defined below.

Definition 2. An apportionment method M satisfies population monotonicity if, for all
p, p′ ∈ Ps,H ∈ Z++, and all pairs of states i, j,

p′i
p′j

>
pi
p j

⇒ ¬[a′
i < ai and a′

j > a j].

Balinski & Young (2001) prove many results about apportionment, including the following
seminal result.

Theorem 7 (Balinski & Young 2001). An apportionment methodM satisfies quota only
if it violates population monotonicity.

Balinski & Young’s (2001) theorem is more general than simply categorizing methods for as-
signing seats in a legislature. It is a fundamental result regarding ineradicable conflicts between
different notions of fairness. The authors delve into a variety of other paradoxes that apportion-
ment methods are vulnerable to, including the new states paradox (adding a new state and cor-
responding seats for that state can alter the seat distribution of other states), and the well-known
Alabama paradox (if the total number of seats in a legislature is increased, no state’s number of seats
decreases). The new state paradox is similar in spirit to violations of IIA, while the Balinski-Young
theorem establishes a tension between monotonicity and fairness requirements, in line with the
Muller-Satterthwaite theorem.
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5.2. Gerrymandering and Districting

Gerrymandering, or the drawing of geographical district lines to shape legislative representation,
has long attracted attention in indirect democracies. It is a specific example of a more general
possibility in which citizens or criteria are divided into subgroups prior to the application of an
intermediate aggregation process (or processes) to produce a set of what one might refer to as
representatives from each of the subgroups that are then used to produce a final choice or ranking
of the alternatives. [Tasnádi (2011) provides a recent review of the literature on the question of
districting.]

Chambers (2008, 2009) uses an axiomatic approach to consider and construct “gerrymander-
proof” choice rules, while Bervoets & Merlin (2012) show that any gerrymander-proof system
that is responsive to voters’ preferences must essentially give every voter a veto. In both cases, the
gerrymander-proof systems violate neutrality, meaning that the rule must privilege some alterna-
tives over others.

Moving beyond gerrymandering, Puppe & Tasnádi (2015) consider general districting proce-
dures. Adopting a normative stance, they present five axioms for districting procedures, each of
which represents an aspect of what one might refer to as a fair districting procedure in a two-party
system. They prove that any districting procedure that is anonymous in the sense of treating both
parties the same must either use information beyond the number of seats won by the parties or
violate a consistency condition requiring that, if two or more districts are combined and the dis-
tricting procedure is applied to their union, the procedure would divide the union into the same
districts as it originally returned.

6. MEASURING LATENT CONCEPTS: JUSTICE AND INEQUALITY

Measurement in the social sciences typically refers to the translation of a qualitative concept (such
as well-being, proportionality, power, or representation) into a numerical quantity. Good mea-
surement involves precisely defining mathematical objects and relations among them in order
to meaningfully reflect empirical quantities and relationships of interest (Roberts 1984, p. xviii).
Following Arrow’s attempts to measure social welfare, the modern mathematical theory of mea-
surement focuses on axioms or conditions that are necessary or sufficient for measurement to
be possible. In this section, we consider axiomatic approaches to the measurement of justice and
inequality.

6.1. Justice

The challenges in defining a social preference ordering apply equally to defining a measure of
justice. Axiomatic theories of justice are divided into two families, welfarist and nonwelfarist. We
focus here solely on welfarist theories, which depend only on individuals’ utilities (i.e., welfares)
and have attracted much more attention from social choice theorists.

Generally speaking, welfarist theories of justice relax IIA by explicitly incorporating cardinal
notions of individual utility and relaxing, to various degrees, the assumption of noncomparability
of individuals’ utilities. This literature begins with the work of Sen (1970a) on extending Arrow’s
theorem to cardinal utilities, discussed above. Space limitations preclude a full treatment of this
broad and deep literature (see the review by Blackorby et al. 2002); instead, we present one rep-
resentative welfarism theorem.

A social-evaluation function, W : Un → R, maps profiles of utility functions into rankings
of the alternatives. Modern axiomatic works on justice (and social welfare) extend Sen’s original
work on cardinal preferences in multiple ways, but the principal distinction is that this literature
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considers various definitions of the degree to which one can directly compare two or more
individuals’ utilities for the various alternatives. In this setting, Arrow’s IIA and Pareto axioms are
represented as follows.

� Binary independence of irrelevant alternatives. A social-evaluation functionW satisfies
binary independence of irrelevant alternatives if, for all u, v ∈ Un and all x, y ∈ X ,u(x) = v(y)
and x �W (u) y implies x �W (v) y.

� Pareto indifference. A social-evaluation functionW satisfies Pareto indifference if, for all
u ∈ Un and x ∈ X , u(x) = u(y) implies that x ∼W (u) y.

To formally represent how one might compare utility functions, we partition the set of
utility profiles, Un, using a correspondence, � : Un ⇒ U , satisfying the following equivalence
requirement:

v ∈ �(u) ⇒ u ∈ �(v). 1.

The basic idea of this correspondence� is that any two utility profiles, u, v ∈ U , with u ∈ �(v) and
v ∈ �(u), must be deemed equivalent to each other in the sense that the function must return the
same ordering of the alternatives. In general, a notion of comparability that divides U into fewer
categories (i.e., � generates a coarser partition of U ) is weaker than one that divides U into more
categories (i.e., a finer partition of U ). Regardless of which notion of comparability one adopts
[e.g., see the reviews by d’Aspremont (1985) and Blackorby & Bossert (2008)], its impact is cap-
tured by the following informational requirement imposed on the social-evaluation function,W :

Definition 3. A social-evaluation functionW satisfies information invariance with respect
to � if, for all pairs of profiles of utility functions, u, v ∈ Un N with u ∈ �(v), it is the case
thatW (u) =W (v).

The following “welfarism theorem” demonstrates that any welfarist theory of justice must sat-
isfy both independence and Pareto, and any theory of justice that satisfies both independence and
Pareto is welfarist.

Theorem 8 (d’Aspremont & Gevers 1977, Hammond 1979). For any correspondence
� : Un ⇒ U satisfying the partition requirement in Equation 1, a social-evaluation function
W satisfying information invariance with respect to � and universal domain satisfies binary
independence of irrelevant alternatives and Pareto indifference if and only if, for all u ∈ U
and x, y ∈ X , the ordering of x and y underW depends only on u(x) and u(y).

Simply put, Theorem 8 implies that welfarism—the principle that justice should be based on
individuals’ welfares—is equivalent to IIA and Pareto efficiency. This is powerful for a couple of
reasons, but perhaps the most surprising is that adopting a welfarist approach compels one to
accept IIA (Patty & Penn 2019). That said, a subtle point regarding Theorem 8’s interpretation is
the role of the conjunction of binary independence and Pareto indifference. It is well known that
there are social-evaluation functions that satisfy either one of the two that do not depend solely
on information about individuals’ welfares (see Blackorby & Bossert 2008).

6.2. Inequality

The systematic study of how to measure inequality dates back at least to Lorenz (1905), Gini
(1912, 1921), Pigou (1912), and Dalton (1920), but its modern, axiomatic study arguably begins
with Atkinson (1970) and Sen (1973). There are two links between this research program and the
Arrovian project. First, higher inequality is (often) equated with lower social welfare, so that this
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MEASURING INEQUALITY: LORENZ CURVES AND THE GINI COEFFICIENT

For any distribution of income, x, with cumulative distribution Fx : R+ → [0, 1] and mean x̄ > 0, the Lorenz curve
for x is defined as the following mapping Lx : [0, 1] → [0, 1]:

Lx(p) = 1
x̄

∫ p

0
F−1
x (t ) dt, for all p ∈ [0, 1].

For two distributions, x and y, we say that x has equal or higher inequality than does y under the Lorenz criterion,
denoted by xLy, if

xLy ⇒ Lx(p) ≤ Ly(p) for all p ∈ [0, 1].

An inequality measure I is Lorenz consistent if

xLy ⇒ xIy.

Finally, the Gini coefficient for x is

G(x) = 1
2x̄

∫∫
|y− x| dF (x) dF (y).

Note that G(x) > G(y) if xLy, but the converse need not hold: The Gini coefficient respects—but additionally
completes (i.e., imposes additional structure above and beyond)—the Lorenz partial ordering.

project may be interpreted as searching for a well-behaved social welfare function in a restricted
domain. (There are several ways to establish this link. Arguably, the most prominent approach is
utilitarian and presumes that individuals share a common, strictly concave utility function over
incomes.) Second, the fact that there exist multiple reasonable measures of inequality led to con-
siderable work on the common and distinctive axiomatic foundations for various such measures.

A common (partial) ranking of two income distributions in terms of inequality is based on
the Lorenz criterion, which serves as the basis for the widely used Gini coefficient (see sidebar
titledMeasuring Inequality: LorenzCurves and theGini Coefficient).There are four foundational
axioms of relative inequality measures. The first is known as the Pigou-Dalton transfer principle,
which requires the inequality measure to judge the inequality of a society as higher if income is
transferred from a poorer person to a richer person. The second is symmetry, which requires that
the inequality of a society be unchanged if the incomes are reassigned to different individuals but
otherwise left unchanged. The third is mean independence, which requires that the measure be
invariant to the units in which incomes are measured. The fourth is replication invariance, which
is a very minimal requirement ensuring that the measure is not sensitive to changes in the size of
the population that leave the distribution of incomes otherwise unchanged.

(PD) Pigou-Dalton transfer principle.Any transfer of income from a poorer person to a richer person
must increase the inequality measure.

(S) Symmetry. If individuals’ incomes are simply reassigned within the society, then society’s inequality
remains unchanged.

(M) Mean independence. If every individual’s income is multiplied by a common factor α > 0, then
society’s inequality remains unchanged.

(R) Replication invariance. If society is replicated m ≥ 1 times, then the inequality of the resulting
society is the same as that of the original society.
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A key result in the measurement of inequality is that the inequality measures that satisfy PD, S,
M, and R are exactly the Lorenz-consistent inequality measures:

Proposition 1 (Foster 1985). A relative inequality measure, I, satisfies PD, S, M, and R if
and only if I is Lorenz consistent.

The Gini coefficient is Lorenz consistent and, accordingly, satisfies PD, S, M, and R. It is not
the only inequality measure that satisfies these axioms, of course, because the Lorenz ranking
is only a partial order; many income distributions are not comparable according to the Lorenz
criterion. Thus, Foster’s (1985) result clarifies where an inequality measure is “making choices”
independent of PD, S, M, and R. Specifically, whenever an inequality measure ranks two income
distributions that are not comparable according to the Lorenz criterion, the measure is imposing
some additional criteria above and beyond the four axioms.

7. BIG DATA: CLUSTERING, MATCHING, AND NETWORKS

As data sets have become larger and more complex, and the cost of computational power has
decreased, interest has grown in methods for summarizing and analyzing high-dimensional phe-
nomena, such as networks, F-MRI (functional magnetic resonance imaging) scans, images, texts,
and genetic information.

As we have written elsewhere, determining whether a particular data set constitutes “big” data
is “a function of the data’s underlying conceptual structure. Much more than being a function of
the number of observations or the number of variables, data is ‘big’ if the concepts underlying the
data—the data’s raison(s) d’être—are more complicated than a list of vectors of numbers” (Patty &
Penn 2015b, p. 95). In this section, we describe axiomatic approaches to three popular big data
applications that reflect this attention to conceptual structure rather than simply size: cluster-
ing algorithms, matching procedures, and network measures. We then conclude with a very brief
overview of emerging topics for axiomatic studies related to organizing and analyzing big data.

7.1. Clustering

The structure of big data is often not known a priori. Often, theory suggests that the data can
and should be broken into distinct groups, where members of the same group are more similar
to each other than they are to members of other groups. A popular class of methods to uncover
such groupings are known as clustering algorithms, which attempt to infer groups (i.e., clusters)
from a given data set. Many such algorithms exist, but the justifications for choosing one over
another have often either been ignored or based on ad hoc considerations determined by the
data in question. Kleinberg (2003) presents a set of axioms for clustering algorithms. A cluster-
ing problem is described by a set of n ≥ 2 observations, S = {1, 2, . . . , n}, and a distance matrix,
d : S× S → R+ satisfying (1) i = j ⇔ d(i, j) = 0 and (2) d(i, j) = d( j, i). Thus, one can think of d
as a n× n nonnegative, symmetric matrix with zeros on the diagonal (and only on the diagonal).

A clustering function is a function, κ , that maps each distance matrix into a partition of S. [That
is, for any distance matrix d, κ (d ) is a set of nonempty subsets of S, κ (d ) ⊂ 2S, such that, for all
γ , γ ′ ∈ f (d ) γ ∩ γ ′ = ∅ and ∪{γ ∈ κ (d )} = S.] For any partition of S, � and any pair of distance
matrices d and d ′, d ′ is a �-transformation of d if it satisfies the following:

� if i, j ∈ S are in the same set within �, then d ′(i, j) ≤ d(i, j),
� if i, j ∈ S are not in the same set within �, then d ′(i, j) ≥ d(i, j).

With this notion of transformations in hand, Kleinberg (2003) defines the following three axioms
for cluster functions:
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1. Scale invariance. For any distance matrix d and any α > 0, we have κ (d ) = κ (α · d ).
2. Richness.For every partition of S,�, there exists some distance matrix d� such that κ (d� ) =

�.
3. Consistency. For any pair of distance matrices, d and d ′, if d ′ is a κ (d )-transformation of d,

then κ (d ′ ) = κ (d ).

Scale invariance requires that the scale of units should not matter—arguably, it is uncontroversial,
but it is violated by some threshold-based clustering algorithms. Richness is a regularity condi-
tion similar in spirt to both universal domain and Pareto in Arrow’s original framework. Among
other things, richness rules out a clustering function that always puts all observations into one
cluster. Consistency is more substantively oriented. In casual terms, it requires that, if every clus-
ter becomes more tightly clustered and all clusters become more distant from each other, then the
resulting clusters returned by the clustering function should not change. Kleinberg (2003) proves
that there is no clustering function that satisfies all three of these axioms.

Theorem 9 (Kleinberg 2003). There is no clustering function κ that satisfies scale in-
variance, richness, and consistency.

Linking Kleinberg’s theorem with Arrow’s IIA axiom and noncomparability, adopting rich-
ness implies that scale invariance is analogous to noncomparability (as defined and discussed in
Section 3), and that consistency is analogous to IIA. Thus, one important practical implication of
Kleinberg’s theorem mirrors that of the d’Aspremont-Gevers-Hammond theorem (Theorem 8,
above): Without some a priori restriction on the range of possible clusters, there is a fundamen-
tal and inescapable tension between two closely related measurement (or invariance) axioms. In a
nutshell, satisfying richness implies that a clustering function must be sensitive to the units of the
distance metric.

Extending this literature, Meila (2005) explores various axioms for clustering functions, and
Ackerman&Ben-David (2009) consider axiomatizingmeasures of quality for clustering functions.
Finally, Zadeh & Ben-David (2009) propose a slight modification to Kleinberg’s (2003) richness
axiom, k-richness, which, for any fixed k ∈ {1, . . . , n}, requires the clustering function to return
every possible set of k clusters. Replacing richness with k-richness, and imposing an additional ax-
iom known as order consistency, Zadeh& Ben-David (2009) show that there is a unique clustering
function, known as single-linkage clustering, that satisfies the four axioms.

7.2. Matching

Matching describes problems of assigning, say, individuals to discrete objects such as schools
(Abdulkadiroğlu & Sönmez 2003), experimental treatments (Abdulkadiroğlu et al. 2017), leg-
islative committees (Shepsle 1975), colleges, or partners (Gale & Shapley 1962). The design of
matching procedures is inherently axiomatic: Planners have some properties (i.e., axioms) they
want their procedure to satisfy (such as efficiency, fairness, and/or strategy-proofness); after all,
planners with no goals could just assign the individuals randomly. For reasons of space, we discuss
the baseline case in which there are n individuals, N = {1, . . . , n}, and n objects, O = {1, . . . , n}.
Each agent has a strict preference ordering �i over the objects.

One famous matching procedure is known as the top-trading cycle (TTC) mechanism [due to
David Gale, and presented first by Shapley & Scarf (1974)], which works as follows. Assign each
agent i ∈ N a unique initial endowment, ei ∈ O. After the allocation, each agent i ∈ N indicates
(“points at”) the agent who possesses i’s most-preferred object (this may be i, if i already has his
or her most preferred object). Denote the “pointing at” relation by�: If agent i points at agent j,
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then we write i� j. There will exist at least one cycle in the� relation. Let {i1, i2, . . . , im} be such
a cycle (i.e., i1 � i2 � . . .� im � i1). Assign each individual i in the cycle the object possessed by
the agent i is pointing at. This is their final allocation, so remove them from the process. (Note
that i� i is a cycle, so that any agent who initially has his or her own most-preferred object is
immediately removed in the first period.) With the remaining agents, repeat the process, so that
now agents point at the remaining agent who possesses their most-preferred of the remaining
objects. Continue until all agents are removed. Given that n is finite, this process will conclude
after no more than n iterations.

A matching mechanism, in this context, is a function, μ : Rn → R, that maps preference pro-
files over O into an ordering over O. The produced ordering represents an assignment of the
objects: If N = {1, 2, 3} and μ(ρ ) = 2 � 3 � 1, this represents the mechanism assigning object 2
to individual 1, object 3 to individual 2, and object 1 to individual 3. In general, we write μi(ρ ) to
denote the object assigned to person i ∈ N given the preference profile ρ ∈ Rn.

In this setting, Ma (1994) characterized the TTC mechanism as the unique mechanism satis-
fying three axioms:

� Individual rationality. A matching mechanism μ satisfies individual rationality if for all
ρ ∈ Rn and all i ∈ N , μi(ρ ) �i ei.

� Pareto. A matching mechanism μ satisfies Pareto if for all ρ ∈ Rn and all distinct pairs of
individuals i �= j ∈ N , μ j (ρ ) � j μi(ρ ) or μi(ρ ) �i μ j (ρ ) (or both).

� Strategy-proofness.Amatchingmechanismμ satisfies strategy-proofness if for all ρ ∈ Rn,
all i ∈ N , and all bi ∈ R, μi(ρ ) �i μi((ρ−i, bi )).

Individual rationality requires that no individual is ever made worse off than they were with their
initial endowment, Pareto requires that the allocation be Pareto efficient, and strategy-proofness
requires that it be a weakly dominant strategy for each individual i to truthfully reveal their pref-
erences (i.e., to point at the agent who actually possesses the available object that i most prefers).
Ma proves the following theorem.

Theorem 10 (Ma 1994). The TTC mechanism is the unique mechanism satisfying indi-
vidual rationality, Pareto, and strategy-proofness.

Given that individual rationality and strategy-proofness are required for participation and
truthfulness within the mechanism, and Pareto is necessary for there to be no gains from collusion
between the individuals, Ma’s (1994) result is particularly powerful in practical terms. Specifically,
the result implies that the TTC mechanism is the only incentive-compatible mechanism for allo-
cating indivisible objects across individuals without side-payments.

7.3. Networks

The study of networks has grown significantly over the past 20 years, particularly as the internet,
search engines, and social media have become increasingly central to modern life. The use of
networks, viewed as graphs, to capture notions such as power or influence in social situations has
attracted sustained attention across the social sciences over the past 50 years (e.g.,Myerson 1977).

7.3.1. Networks as graphs. Networks are often modeled as graphs. In this representation, the
network consists of a set of n nodes, denoted by N = {1, . . . , n}, and a set of edges (connections
between nodes), denoted by E ⊂ N ×N . We denote a network by G = (N ,E ). The set of all
(directed) graphs on n nodes is denoted by Gn. For any graph G = (N ,E ) ∈ Gn and distinct nodes
i, j ∈ N , G+ (i, j) ≡ (N ,E ∪ {(i, j)}) denotes the graph that results after the edge (i, j) is added
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to G and, for any permutation ϕ : N → N , ϕ(G) = (N ,E ′ ) denotes the graph defined by (i, j) ∈
E ⇔ (ϕ(i),ϕ( j)) ∈ E ′.

A centrality index is a function, σ : Gn → Rn, that assigns to every node in a network a score
that represents how central the node is relative to all other nodes in the network; the score assigned
to node i in graph G is denoted by σ (G)i. While a centrality index assigns a real number to each
node (i.e, it is a cardinal measure), we can also think about the index as returning a ranking of
the nodes (i.e., as an ordinal construct). For any centrality measure σ, any graph G = (N ,E ), and
any pair of nodes i, j ∈ N , the ordinal ranking of i and j according to σ is defined simply as
i �σ (G) j ⇔ σ (G)i ≥ σ (G) j [and i �σ (G) j ⇔ σ (G)i > σ (G) j].

Dozens of such indices have been defined and employed in the study of networks. Limited
space precludes a lengthy treatment of such indices; the interested reader is referred to Borgatti
& Everett (2006), Newman (2010), and Ward et al. (2011). A few high-profile indices are the
following:

1. Out-degree centrality returns: for each node, the number of other nodes to which the node
in question is connected. Formally, this is defined as σ d

i (G) ≡ |{e ∈ E : e = (i, j)}| for some
j �= i.

2. Betweenness centrality returns: for each node, the number of shortest paths between other
pairs of nodes that contain the node in question.

3. Closeness centrality returns: for each node, the average length of the shortest paths from
the node in question to every other node.

Recently, many scholars have begun developing and exploring potential axiomatizations of
these and other centrality indices (e.g., Holzman 1990, Vohra 1996, Altman & Tennenholtz 2005,
Boldi & Vigna 2014, Bandyopadhyay et al. 2017, and Boldi et al. 2017, to name only a few). For
reasons of space, we focus on an elegant and powerful result presented by van den Brink & Gilles
(2003), who define three simple axioms for centrality indices.

� Anonymity. A centrality index σ satisfies anonymity if for any G and any permutation
ϕ : N → N , σϕ(i) (ϕ(G)) = σi(G).

� Positive responsiveness.A centrality index σ satisfies positive responsiveness if for anyG =
(N ,E ) ∈ Gn, any distinct triplet i, j, k ∈ N with (i, k) �∈ E, i �σ (G) j implies that i �σ (G+(i,k) j.

� Independence of nondominated arcs.A centrality index σ satisfies independence of non-
dominated arcs if, for all G = (N ,E ),G′ = (N ,E ′ ) ∈ Gn and i, j ∈ N such that (i, k) ∈ E ⇔
(i, k) ∈ E ′ and ( j, k) ∈ E ⇔ ( j, k) ∈ E ′, i �σ (G) j ⇔ i �σ (G′ ) j.

Anonymity is a standard requirement that implies the index can use only information about the
edges of the graph when scoring the nodes. Positive responsiveness is another example of a mono-
tonicity axiom and, as the name suggests, requires the index to be minimally responsive to adding
edges to a graph. The independence of nondominated arcs axiom is less intuitive than positive
responsiveness but is similar in the sense that, while positive responsiveness specifies what an in-
dex shouldmeasure, the independence axiom specifies what the index should notmeasure. In terms
of desirability, the axiom—like most independence axioms—can be defended as ensuring that the
index is robust to missing data (for more on this and other defenses of independence axioms, see
Patty & Penn 2019).

The following theorem, due to van den Brink & Gilles (2003), shows that these three axioms
exactly characterize centrality indices that are ordinally equivalent to out-degree centrality.

Theorem 11 (van den Brink & Gilles 2003). A centrality index σ satisfies anonymity,
positive responsiveness and independence of nondominated arcs if and only if it is
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equivalent to out-degree centrality, σ d . That is, for any graph G = (N ,E ) ∈ Gn, and pair
of nodes i, j ∈ N , σi(G) ≥ σ j (G) ⇔ σ d

i (G) ≥ σ d
j (G).

7.3.2. Other axiomatic approaches to the study of networks. Limited space precludes a
deeper dive into axiomatic work regardingmeasurement of and within networks, but the axiomatic
method is being applied broadly. For example, Butts (2000) develops axioms for the measurement
of network complexity, Jin et al. (2011) provide an axiomatization ofmeasures of similarity between
roles in graphs, and Cohen & Zohar (2015) provide axiomatizations of link-prediction functions.

8. OTHER AREAS OF RESEARCH

As the breadth of this article presumably demonstrates, “social choice since Arrow” has generated,
and continues to generate, axiomatic research into a wide-reaching array of topics. Indeed, the
breadth is so great that we regrettably had to neglect some incredibly interesting and vibrant
areas of research.

8.1. Data Aggregation and Compound Majority Paradoxes

Nurmi (1999, ch. 7) provides an excellent overview of compound majority and other vot-
ing paradoxes and how to deal with them (see also Lagerspetz 1996, Nurmi 1997, Nurmi &
Meskanen 2000, Penn 2011). Compound majority paradoxes—such as the Anscombe, Ostro-
gorski, Referendum, and Simpson’s paradoxes—each represent different challenges encountered
when aggregation occurs multiple times and at different stages within an overall aggregation pro-
cess. Examples of such processes are easy to find in politics. For example, votes are aggregated at
the district (or party) level and into seats within a legislature, and then the resulting seats are ag-
gregated into policy through the passage of legislation. Of course, these paradoxes have analogues
in data analysis and inference—for example, comparing and combining the results of differently
sized experimental trials.

8.2. Tournament Solution Concepts

A complete, but not necessarily transitive, binary relation on a set is referred to as a tournament.
When using a nondictatorial preference aggregation rule that satisfies universal domain, Pareto,
and IIA (e.g., majority rule), the collective choice problem must be defined over this set of (poten-
tially cyclic) collective preferences. A large literature has developed over the past 50 years attempt-
ing to deal with such situations. Schwartz (1986) and Laslier (1997) are the standard references;
more recent work in this area includesMoser et al. (2009),Penn (2006a,b), Fey (2008), andDuggan
(2013).

8.3. Domain Restrictions

A recurring objection to Arrow’s theorem is that it presumes that individualsmight have any prefer-
ence ordering. Relaxing this requirement is referred to as imposing domain restrictions. Gaertner
(2001) provides a comprehensive treatment of the topic. Historically, much of this work was mo-
tivated by a desire to establish conditions under which the majority rule core is guaranteed to be
nonempty. The consideration of single-peaked domains has resulted in many important results
over the past 40 years (for more on these, see Sen & Pattanaik 1969, Blin & Satterthwaite 1976,
Moulin 1980, Gaertner 2001, Ballester & Haeringer 2011, Gailmard et al. 2008, Saporiti 2009,
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Penn et al. 2011, and Duggan 2017). Ferejohn & Grether (1974) and Nakamura (1979) provide
an elegant characterization of when restrictions on the number of alternatives will eliminate the
possibility of cycles occurring. Finally, Greenberg (1979) and Schofield (1984) consider domain
restrictions when the set of alternatives is a compact subset of Euclidean space.

8.4. The Discursive Dilemma and Doctrinal Paradox: Judgment Aggregation

A parallel axiomatic literature with connections to the Arrovian aggregation problem has emerged
recently, focused on aggregation of logical conclusions. Just as Arrow’s theorem implies that aggre-
gating transitive individual preferences need not generate a transitive result, the doctrinal paradox
(Kornhauser & Sager 1986, Kornhauser 1992), also referred to as the discursive dilemma (Pettit
2001), demonstrates that aggregating heterogeneous, internally logically valid conclusions can
lead to a logical fallacy. This is a fascinating and active literature, and there are many open ques-
tions about the exact relationships between its results and their analogues in social choice theory.
We refer the reader to the introductions and reviews provided by List & Puppe (2009) and Grossi
& Pigozzi (2014). Reviews of the literature more directly focused on political science have been
provided recently by Lax (2011) and Quinn (2012).

9. CONCLUSION

Providing a succinct and unitary conclusion to a review such as this is arguably a hopeless task.
Our goal was to illustrate how the literatures that Arrow’s theorem has informed and continues to
inform are still evolving and, presumably, will continue to evolve far into the future. The heart of
Arrow’s initial inquiry was measurement, and this job is fundamental, ubiquitous, and—as implied
by Arrow’s impossibility result—never-ending.That said,Arrow’s seemingly negative conclusion is
properly seen as a positive result in the sense that it illustrates the power of the axiomatic approach
in helping to clarify the important debates about measurement, regardless of the subject of inquiry.
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