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             S
ocial scientists commonly construct indices to reduce 

and summarize complex, multidimensional data. 

Examples include assigning texts to topical cat-

egories, converting roll call matrices into “ideal 

points,” producing brain images from raw fMRI data 

(Aguirre  2014 ), various node- and edge-indices in network 

analysis, and the wide array of composite indicators that seek 

to distill potentially thorny concepts such as income inequal-

ity, democratization, civic competence, and environmental 

responsibility into a list of numbers. The benefits of these 

indices are clear: a single number is simple to interpret, and 

such indices can facilitate communication among scholars, 

policymakers, and the public on important issues (see Nardo 

et al.  2005 ). Moreover, indices make it possible to track the 

absolute and relative performance of objects over time, and 

lend themselves to empirical study as both dependent and 

independent variables because they can be readily incorpo-

rated into a regression. 

 In this contribution we begin by noting that empirical 

analysis of many interesting social science topics—and in 

particular those popularly associated with “big data” such 

as networks, text analysis, and genetics—always require data 

reduction. Data reduction is achieved through aggregating 

higher-dimensional data into lower-dimensional measures. 

In other words, we conceive of the “bigness” of data as a 

function of the data’s underlying conceptual structure. Much 

more than being a function of the number of observations or 

the number of variables, data is “big” if the concepts under-

lying the data—the data’s  raison(s) d’être —are more compli-

cated than a list of vectors of numbers. Social networks, texts, 

genomes, and brain scans all satisfy this requirement. 

 With this notion of big data in hand, our argument is that 

formal theory is central to modern data analysis. Furthermore, 

our argument is that formal theory is the heart of measure-

ment: regardless of one’s ultimate approach to “theory meets 

data,” à la “Empirical Implications of Theoretical Models,” 

big data concepts are generally unamenable to classical, uni-

dimensional empirical analysis, and this reality strikes prior 

to even reaching traditional questions of causal identifica-

tion. In other words, while one might think of formal theory 

as describing an apparatus that might produce hypotheses to 

be “tested” by the data, we point out here that formal theory, 

specifically  social choice theory , speaks to how the data with 

which the test will be carried out was created. Social choice 

theory is central to measurement because it is primarily 

concerned with aggregation: the creation of a measure 

of some underlying concept (e.g . , social welfare, majority will, 

inequality, power) from a set of potentially heterogeneous 

inputs (e.g . , individual preferences, ballots, incomes, relative 

capabilities).  1   

 As the availability of detailed and complex data—and the 

computational resources used to analyze it—has surged in 

recent years, the need to reduce the dimensionality of com-

plex objects for theoretical and practical study has grown. 

Consider, for example, the class of social networks, which are 

highly multidimensional and complex objects. Directly ana-

lyzing networks per se would require analyzing each poten-

tial network structure separately; networks are not ordered 

objects, so there are no simple “greater than / less than” 

relationships that could be assumed. The size of the space of 

possible networks makes the analysis of all possible network 

structures impractical for all but very small networks.  2   

 Putting these impracticalities aside, there is a more impor-

tant reason for why one would not want to consider all pos-

sible network structures. Such an analysis might tell us that 

certain networks matter and others do not, but it would pro-

vide no insight into how or why networks matter. Answering 

these questions requires a theory of what network character-

istics matter. From the “how” perspective, a theory is required 

to render the analysis portable, or applicable to data not in 

the sample. From the “why” perspective, a theory is required 

to make the analysis extendable to topics outside the domain 

of the immediate question at hand. Because of the complexity 

of the space of possible networks, any meaningful theory of 

networks must involve data reduction through  aggregation . 

In a social network, for example, aggregation could involve 

transforming information about every individual’s connec-

tion to every other individual into a ranking of each person’s 

“connectedness” within the network. For any type of trans-

formation of this sort, there  must  exist instances in which 

two diff erent networks will yield the same list of “connect-

edness” rankings, because there are more potential networks 

than there are rankings. In these situations the connected-

ness ranking deems the two diff erent networks equivalent. 

Phrased diff erently, if a set of networks generate identical 

connectedness rankings, then differences between those 

networks are not  measurable  with respect to the ranking 

algorithm being utilized. 

 Any process of data reduction necessarily involves choices 

about measurement: the information to retain versus the 

information to lose. As mentioned previously, many emerging 

and classic areas of study rely on aggregation in their empirical 
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analysis. While we use the running example of networks in 

this article, our point is applicable to any problem of reducing 

multidimensional data into a unidimensional measure—and 

as we have argued previously, these problems are unavoidable 

in “big data” analyses.  

 NETWORK ANALYSIS AND AGGREGATION 

 To illustrate some of our arguments we focus on the topic 

of network analysis, which has played a growing role across 

the various subfields of political science  3   in recent years with 

examples being coordination and collective action,  4   legisla-

tive behavior,  5   judicial decision-making,  6   policy adoption,  7   

causal inference,  8   and the formation of political opinions and 

attitudes.  9   Networks are big data in the truest sense: they are 

not expressible in a unidimensional fashion. Accordingly, 

analysis (e.g., regression analysis or simple reporting) usually 

requires some data reduction as an intermediate step (e.g., 

Frankel and Reid  2008 ).  10   Because of this practical challenge, 

social choice/axiomatic approaches to theory development in 

political science are relevant for this new area of research. Put 

succinctly, network analysis—like all big data enterprises—is 

necessarily reliant on (typically multiple) theoretical choices 

with respect to measurement; social choice theory is primarily 

concerned with the logical implications of such choices.  

 A Running Example: Centrality Indices 

 A  network  is pair of nodes (e.g., people), N, and edges (e.g., 

connections),  E   ⊂   N  ×  N . We denote a network by G = (N, E). 

A  centrality index  is a function,  c , that assigns every node in a 

network a score that represents how central the node is rela-

tive to all of the other nodes in the network.  11   There are many 

such indices, but we focus on three indices that are widely 

used, which we define informally:  12  

   

      1.      The  degree centrality  of a node, denoted by  c   d  , is the number 

of other nodes to which the node in question is connected.  

     2.      The  betweenness centrality  of a node, denoted by  c   b  , is the 

number of shortest paths between  other  pairs of nodes that 

contain the node in question.  

     3.      The  closeness centrality  of a node, denoted by  c   c  , is the aver-

age length of the shortest paths from the node to every 

other node.   

   

  While a centrality index assigns a real number to each node 

(i.e, it is a cardinal measure), we can also think about the 

index as returning a ranking of the nodes (i.e., as an ordinal 

construct).    

 AN EXAMPLE: THE FLORENTINE MARRIAGE NETWORK 

 The Florentine Marriage Network (Padgett and Ansell 1993) 

describes the marital ties among 15 major families in Florence 

in the early fi fteenthth century. It is displayed in  fi gure 1 , and 

the rankings of the families for the three indices previously 

defined are displayed in  table 1 . As indicated by each of the 

three indices, the Medici family is clearly “central” in this net-

work. However, the indices diff er with respect to the rankings 

of the remaining families. Thus, the choice of which index to 

use in an analysis is potentially important: each of these indi-

ces aggregates the information available in the Florentine net-

work into a smaller format (a list of 15 numbers). In so doing, 

of course, a centrality index loses some of the information 

contained in the original network. Each of these indices makes 

diff erent choices about what information to lose.         

 To make this point tangible, suppose that 

one uses degree centrality,  c   d  , to represent the 

centralities of the families. In so doing, the 

analyst has equated the Florentine network 

as displayed in  fi gure 1  with each of the three 

networks displayed in  fi gure 2 . Each of the three 

“degree-equivalent” networks assigns each of the 

families the same degree centrality as they pos-

sess in the network displayed in  fi gure 1  (so that, 

for example, the Medici have the highest degree 

centrality in each of these three networks) but, 

as described in  fi gure 2 , each of these degree-

equivalent networks produce a diff erent fam-

ily as the most “close” and most “between.” 

That is, in each of the three networks, a 

family other than the Medici is assigned the 

highest  c c    and   c b   scores. However, remember 

that, with respect to the original (i.e . , true) 

network structure, the Medici family should 

be assigned highest closeness centrality and 

the highest betweenness centrality. This 

divergence is because, by the definition of the 

data reduction/aggregation process used here 

(i.e . , degree centrality), the three networks 

in  fi gure 2  are not “measurable” (or distinguish-

able) with respect to degree centrality, but  are  

 F i g u r e  1 

  The Florentine Marriage Network 
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measurable/distinguishable with respect to both closeness 

and betweenness centrality.     

  Figure 2  indicates how diff erent indices “lose” or “forget” 

diff erent aspects of the network: degree centrality does not 

diff erentiate between the original Florentine network and the 

networks in  fi gure 2 , whereas closeness and betweenness each 

do diff erentiate between them.  Figure 3  contrasts the original 

Florentine network with a richer network—one containing a 

strictly larger set of links—that maintains the betweenness 

ranking of the 15 families. In the new network, the Guadagni 

family now is the “degree center,” rather than the Medici fam-

ily. This enlarged network demonstrates the information lost 

by the betweenness centrality index: it can not distinguish 

between the enlarged network (represented by the additional 

dashed lines) and the original one, unlike degree centrality.     

 Spanning fields such as sociology, economics, physics, and, 

of course, political science, many scholars have noted that dif-

ferent centrality indices measure diff erent things; space pre-

cludes us from a rote and necessarily incomplete recounting 

of the many such published notices of this point. However, 

less well appreciated is that this same point has been made 

regarding social choice. Arrow’s Impossibility Theorem (Arrow 

 1963 ) implies that diff erent aggregation methods of individual 

preferences (i.e., diff erent voting systems) “measure diff erent 

things.” More specifically, in a general and precise sense, there 

is no perfect aggregation method for preferences— we are sim-

ply and humbly linking this insight with the received wisdom 

regarding centrality indices in the study of networks. 

  The link between Arrow’s Impossibility Theorem and the 

notion that diff erent centrality indices (or, more generally, 

data reduction techniques) measure different theoretical 

notions  is  the foundation of the equivalence of the “big data 

measurement problem” with the central question of social 

choice theory:  how can we measure social welfare or preference ? 

The choices that an analyst must make and the trade-off s 

inherent in choosing indices to represent a network or other 

“big data” are the same as those faced by a social planner 

attempting to aggregate individual preferences, economic fac-

tors, and other criteria to produce a social preference over a set 

of alternative policies. As we have argued at length elsewhere, 

“social choice theory informs us about the possibilities and 

impossibilities of aggregation. Furthermore, and tellingly, 

aggregation is simply that: putting various things together to 

produce an output” (Patty and Penn  2014b , 7). Any procedure 

that takes “big” data and makes it “smaller” is aggregating 

(and hence potentially losing) information and, in the pro-

cess, making choices about what to be responsive to versus 

what to ignore.   

 AXIOMATIC CHARACTERIZATIONS OF CENTRALITY 

 Having worked through an available and palpable example 

of data reduction in a big data problem, we examine a few 

examples of how social choice results and axiomatic analysis 

can illustrate these measurement problems. Precisely because 

aggregation is valuable when one is confronting complicated, 

high-dimensional data, practically gauging the performance 

and characteristics of an aggregation approach through trial 

and error is cumbersome. An axiomatic approach—deriving 

a set of desiderata one would like the aggregation method 

to satisfy and then characterizing the (possibly empty) class 

 Ta b l e  1 

  Various Centrality Rankings of the Florentine Families in  Figure 1   

Degree (cd)  Betweenness (cb) Closeness (cc)  

1  Medici 6 1 Medici 47.5 1 Medici 0.56 

2t Guadagni 4 2 Guadagni 23.17 2 Ridolfi 0.5 

2t Strozzi 4 3 Albizzi 19.33 3t Albizzi 0.48 

4t Bischeri 3 4 Salviati 13 3t Tornabuoni 0.48 

4t Albizzi 3 5 Ridolfi 10.33 5 Guadagni 0.47 

4t Tornabuoni 3 6 Bischeri 9.5 6t Barbadori 0.44 

4t Ridolfi 3 7 Strozzi 9.33 6t Strozzi 0.44 

4t Peruzzi 3 8 Barbadori 8.5 8 Bischeri 0.4 

4t Castellani 3 9 Tornabuoni 8.33 9t Salviati 0.39 

10t Salviati 2 10 Castellani 5 9t Castellani 0.39  

    Note: “Degree,” “Betweenness,” and “Closeness” Refer to degree centrality, betweenness centrality, and closeness centrality, as defined previously in text.    

   Any procedure that takes “big” data and makes it “smaller” is aggregating (and hence 
potentially losing) information and, in the process, making choices about what to be 
responsive to versus what to ignore. 
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of methods that satisfy them—is valuable in these situations 

because of its generality and because it directly and clearly 

confronts the questions of measurability that we discussed. 

In this section, we demonstrate the value of this approach 

while using our running example of centrality indices.  13   We 

start by defining two axioms that one might want a centrality 

index to satisfy; in the process we discuss the close connec-

tion between these axioms (defined for network data) and 

well-known social choice theoretic axioms that characterize 

properties of voting systems (defined for ballot data).  14    

 Axiom 1: Positive Responsiveness 

 A centrality index satisfies  positive responsiveness  if it main-

tains or increases the ranking of nodes that have gained more 

links relative to nodes that have not. To illustrate more for-

mally, suppose that node  i  was ranked (weakly) higher than 

node  j  for a network G. Now add one extra edge between i and 

an h ≠ j that did not exist before, and call this new network  G   ′  . 
If the index is positively responsive then it must now rank  i  as 

 strictly  better than  j . Positive responsiveness is a well-known 

axiom applied to voting systems. It says that if the voting 

rule originally ranked  x  as weakly better than  y  and a person 

changes their ballot to strictly improve  x  relative to  y  then then 

rule must rank  x   strictly  better than  y  after this change occurs. 

 Positive responsiveness is directly related to measurement 

in the sense that an index that satisfies it always responds 

in a sensible monotonic fashion to a simple and easily dis-

cernible alteration of the network. In particular, focusing 

on the notion of centrality, positive responsiveness requires 

that the index never deem a node less central as the result of 

that node adding links to more nodes. Insofar as—for theo-

retical reasons—one thinks a node “being connected to” more 

nodes never makes the node in question less central to the 

network, then the appro-

priate measure of central-

ity  must  satisfy positive 

responsiveness. 

 In social choice and 

mechanism design, pos-

itive responsiveness is 

a type of  monotonicity  

axiom, which describes a 

system in which “moving 

a candidate up in one’s 

ballot” never makes the 

candidate less likely to 

win. While there are gen-

eralizations of this idea, it 

is well-known that some 

version of monotonicity 

is required to ensure 

that no individual has 

an incentive to “vote stra-

tegically” (see Muller and 

Satterthwaite 1997). This 

link with positive respon-

siveness provides yet 

another indication of the 

connection between the axiomatic approach and measure-

ment: if an index fails to satisfy positive responsiveness, then 

there will be some situations in which “a node seeking to 

maximize its centrality” would have an incentive to “discon-

nect itself” from one or more other nodes.   

 Axiom 2: Independence of Irrelevant Edges 

 An index satisfies  independence of irrelevant edges  (IIE) if it 

produces the same relative ranking of nodes i and j for any 

two graphs in which the edges containing  i  and  j  have not 

changed. For example, suppose that G and  G   ′   are two net-

works where  i  has the same set of edges in both G and  G   ′   and  j  

has the same set of edges in both G and  G   ′  . Then if  i  is ranked 

above  j  in G it should also be ranked above  j  in  G   ′  , and add-

ing an edge between two diff erent nodes,  a  and  b , should not 

aff ect the relative  i ,  j  ranking. Readers familiar with Kenneth 

Arrow’s famous impossibility theorem—the most well-known 

result in social choice theory—will note the similarity between 

this condition and Arrow’s  independence of irrelevant alterna-

tives , which states that a voting system’s relative ranking of 

alternatives  x  and  y  should be invariant to how some other 

alternative  z  fares in each voter’s ballot. 

 The IIE axiom is less intuitive than positive responsive-

ness, but it too is directly linked to measurement. Whereas 

positive responsiveness specifies what an index  should  measure, 

IIE specifies what an index  should not  measure. An index 

that satisfies IIE can rank a node only on the basis of the 

nodes to which that node is attached. Accordingly, the IIE 

axiom is directly about data reduction: any index that satisfies 

it can be accurately calculated for subnetworks, as displayed 

in  fi gure 4 . The figure displays a situation in which only a sub-

set of the nodes of the original Florentine network are scored. 

If the links denoted by solid lines are used to rank the nodes 

 F i g u r e  2 

  Three Degree-Equivalents of the Florentine Network 
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 F i g u r e  3 

  An Enlarged, Betweeness-Equivalent of the Florentine Network 

  
 Enlarged Florentine Network, New Links are Dashed Arrow Indicates Family with Highest Degree Italicized Families have Higher 
Degrees than Medici (circled).      

   In big data settings, such as social networks and text analysis, the premise that one has 
collected perfect, or even “equal-quality,” data about every unit of analysis is generally 
implausible. Using an index that satisfies IIE mitigates some of an analyst’s worries 
about using such data. 

labeled in boldface, the relative rankings of those nodes will 

remain unchanged if the index satisfies IIE. Put another 

way, an index that violates IIE in some cases will yield faulty 

rankings of perfectly observed nodes as a result of faulty 

data regarding other nodes. In big data settings, such as 

social networks and text analysis, the premise that one has 

collected perfect, or “equal-quality,” data about every unit 

of analysis is generally implausible. Using an index that 

satisfies IIE mitigates some of an analyst’s worries about 

using such data.     

    Theorem 1 ( C.f. , van den Brink and Gilles  2003 ) 

  A centrality index satisfies Positive Responsiveness and IIE if and 

only if it is equivalent to degree centrality,   cd  . That is, for any pair 

of nodes  i  and  j ,  i  is ranked higher by the index than   j   if and only if  

 i   has strictly more links than   j   does.  

 Theorem 1 states that requiring a centrality index to sat-

isfy positive responsiveness and IIE implies that one must use 

an index that is equivalent to degree centrality,  c d  .  16   Accord-

ingly, the examples and discussion regarding the Florentine 

Marriage Network illustrate that closeness centrality and 

betweenness centrality  must  each violate at least one of these 

axioms.  17   

 This point bears repeating: the  practical  import of The-

orem 1 is that it highlights for analysts the conceptual 

and theoretical proper-

ties that they want to 

“measure,” and—in the 

best of cases—identifies 

the class of data reduc-

tion techniques (in this 

case, centrality indices) 

that achieves the ana-

lysts’ goals. Put this way, 

Theorem 1 clearly lays 

out the following advice 

to a practical analyst:  if 

the theoretical concept 

you are trying to measure 

respects positive respon-

siveness and IIE, then it 

is precisely and uniquely 

measured by degree cen-

trality . Note that this 

conclusion is powerful 

and—more importantly—

the power of the conclu-

sion derives not from 

some sort of high-powered 

math under the proof of 

Theorem 1 but, rather, 

from the clarity and pre-

cision emanating from 

the abstract nature of the 

IIE and positive respon-

siveness axioms. Simply 

put, the fullest power of 

 We are now in a position to state an interesting char-

acterization theorem, which is a straightforward extension 

of a theorem recently proved by van den Brink and Gilles 

( 2003 ).  15   
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formal theory is derived from the clarity of its starting 

points. Axioms, definitions, assumptions: when applied 

correctly, these foundations of formal theory are identical 

to the gold standards of transparency and replicability in 

empirical work. This is no coincidence: “data” is nothing 

until we use it to measure something, and “measurement” 

is accordingly  inherently  theoretical. Our argument in this 

contribution is that, while nothing is perfect, axiomatic 

approaches to measurement are the most reliable theoreti-

cal approaches available.    

 CONCLUSION 

 In this article, we have attempted to clearly illustrate 

the fundamental connections between social choice and 

 measurement  in social science. Especially with the dawn-

ing of the era of big data, data reduction—and hence 

aggregation—is both practically necessary and done with 

increasing frequency. While we stand on the shoulders of 

giants—many, many scholars in essentially every social sci-

ence have noted the importance of theoretically grounded 

measurement—the rapidly growing complexity of the 

data being explored and theories being explored increase 

the value of the axiomatic approach to measurement that 

social choice has been founded on since the seminal contri-

butions of Arrow, Gibbard, and Satterthwaite (Arrow  1963 ; 

Gibbard 1973; Satterthwaite  1975 ). Divining the properties 

of any specific aggrega-

tor, such as a central-

ity index through trial 

and error, Monte Carlo 

methods, or other search 

methods, is time con-

suming and necessarily 

incomplete—and even 

more so as the curse of 

dimensionality comes 

into even starker relief 

with the emergence of 

big data. While axio-

matic methods are by 

no means a panacea—

axioms are useful precisely 

because they are stark, 

and characterization/

impossibility results off er 

maximum validity at the 

price of nuance  18  —they 

represent a clear com-

plement to even the best 

approaches generally 

employed by empirical 

researchers confronting 

complex data.     
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  N O T E S 

     1.     In Patty and Penn ( 2014 b), we use this point as the basis for linking the 
classic “impossibility theorems” of social choice theory (e.g., Arrow  1963 ; 
Gibbard 1973; Satterthwaite  1975 ) with the role of explanations and 
justifications in constraining and legitimizing democratic governance.  

     2.     For example, consider the space required for a recent strategic analysis of 
network structure and information in Patty and Penn ( 2014 a), where we 
consider only the set of 3-node networks.  

     3.     See McClurg and Young ( 2011 ); Ward, Stovel, and Sacks ( 2011 ); and 
Lazer ([2011) for recent summaries, as well as Heaney and McClurg –
([2009), Huckfeldt ( 2009 ), Siegel ( 2011 ) and Hafner-Burton, Kahler, and 
Montgomery ( 2009 ) for more subfield-focused reviews.  

     4.     Among others, see Mutz ( 2002 ); and McCubbins, Paturi, and Weller 
( 2009 ).  

     5.     For example, Fowler ( 2006b , a) , Zhang et al. ( 2008 ), and Cho and Fowler 
( 2010 ).  

     6.     One example among many is Fowler, Johnson, Spriggs II, Jeon, and 
Wahlbeck ( 2007 ).  

     7.     A small selection from a large literature includes Rhodes ( 1990 ), Mintrom 
and Vergari ( 1998 ), and Simmons, Dobbin, and Garrett ( 2007 ).  

     8.     See Fowler, Heaney, Nickerson, Padgett, and Sinclair ( 2011 ).  

     9.     Exemplary of a large literature are McClurg ( 2006 ) and Klofstad, Sokhey, 
and McClurg ( 2013 ).  

     10.     For example, even drawing a network requires choices to be made: a nearly 
ubiquitous example of this is the Fruchterman-Reingold algorithm for 
drawing networks as 2-dimensional graphs (Fruchterman and Reingold 
 1991 ).  

     11.     Similar indices can be defined for edges in the network as well.  

 F i g u r e  4 

  Subnetworks and IIE 

  
 Sub-Network of Florentine Network, “Omitted” Links are Dashed Only Bold-Faced Families Scored, Italicized Families Not Scored 
IIE Implies Relative Rankings of Bold-Faced Families Unchanged.      
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     12.     Space precludes a lengthy treatment of such indices; the interested reader 
is referred to Borgatti (2005), Borgatti and Everett ( 2006 ), Jackson ( 2008 ), 
Newman ( 2010 ), and Ward, Stovel, and Sacks. (2011).  

     13.     Note that van den Brink and Gilles’ axioms and corresponding theorem 
that follow (van den Brink and Gilles  2003 ) are defined for the more 
general case of directed graphs. Their proof technique holds for the case 
of undirected graphs, and to simplify our discussion we have modified 
their axioms and results slightly to accommodate this less general class of 
graphs that we consider here.  

     14.     For reasons of space, we omit a third axiom that is satisfied by all centrality 
indices that are used. This axiom, anonymity, requires that the labels of 
the nodes have no eff ect on the ranking produced by the index. Anonymity 
of a network centrality index is closely related to both the anonymity and 
neutrality axioms for voting systems, which require the system to give 
every voter equal weight in determining the outcome and, respectively, to 
treat each candidate equally.  

     15.     For the reasons discussed in note 14 we are imposing anonymity in the 
definition of a centrality index.  

     16.     The interested reader will note the similarity between this result and May’s 
Theorem (May 1952), a famous social choice-theoretic result that proves 
that the only anonymous, neutral and positively responsive voting rule is 
plurality rule.  

     17.     Closeness centrality and betweenness centrality are each anonymous.  

     18.     For example, Theorem 1 off ers no guidance about questions such as “how 
dependent on irrelevant edges is closeness centrality?”   

  R E F E R E N C E S 

    Aguirre  ,   Geoff rey K  .  2014 . “ Functional Neuroimaging: Technical, Logical, and 
Social Perspectives .”  Hastings Center Report   44  ( s2 ):  S8 – S18 .  

    Arrow  ,   Kenneth J  .  1963 .  Social Choice and Individual Values, 2 nd  ed .  New York : 
 Wiley .  

    Borgatti  ,   Stephen P  .  2006 . “ Centrality and Network Flow .”  Social Networks  
 27  ( 1 ):  55 – 71 .  

    Borgatti  ,   Stephen P.  , and   Martin G     Everett  .  2006 . “ A Graph-Theoretic Perspec-
tive on Centrality .”  Social Networks   28  ( 4 ):  466 –84.  

    Cho  ,   Wendy K. Tam  , and   James H.     Fowler  .  2010 . “ Legislative Success in a 
Small World: Social Network Analysis and the Dynamics of Congressional 
Legislation .”  The Journal of Politics   72  ( 1 ):  124 –35.  

    Fowler  ,   James H  .  2006 a.  Connecting the Congress: A Study of Cosponsorship 
Networks .  Political Analysis   14  ( 4 ):  456 –87.  

    ——— .  2006 b. “ Legislative Cosponsorship Networks in the US House and 
Senate .  Social Networks   28  ( 4 ):  454 –65.  

    Fowler  ,   James H.   and   Timothy R.     Johnson  ,   James F.     Spriggs     II  ,   Sangick     Jeon  , 
and   Paul J.     Wahlbeck  .  2007 . “ Network Analysis and the Law: Measuring 
the Legal Importance of Supreme Court Precedents .”  Political Analysis  
 15  ( 3 ):  324 –46.  

    Fowler  ,   James H.  ,   Michael T.     Heaney  ,   David W.     Nickerson  ,   John F.     Padgett  , 
and   Betsy     Sinclair  .  2011 . “ Causality in Political Networks .”  American 
Politics Research   39  ( 2 ):  437 –80.  

    Frankel  ,   Felice  , and   Rosalind     Reid  .  2008 . “ Big Data: Distilling Meaning from 
Data .”  Nature   455  ( 7209 ):  30 .  

    Fruchterman  ,   Thomas M. J.  , and   Edward M     Reingold  .  1991 .  Graph Drawing by 
Force-Directed Placement .  Software: Practice and Experience   21  ( 11 ):  1129 –64.  

    Allan Gibbard  ,   Allan  .  1973 . “ Manipulation of Voting Schemes: A General 
Result .”  Econometrica   41  ( 4 ):  587 – 601 .  

    Hafner-Burton  ,   Emilie M.  ,   Miles     Kahler  , and   Alexander H.     Montgomery  .  2009 . 
“ Network Analysis for International Relations .”  International Organization  
 63  ( 03 ):  559 –92.  

    Heaney  ,   Michael T.  , and   Scott D.     McClurg  .  2009 . “ Social Networks and American 
Politics: Introduction to the Special Issue .”  American Politics Research  
 37  ( 5 ):  727 –41.  

    Huckfeldt  ,   Robert  .  2009 . “ Interdependence, Density Dependence, and 
Networks in Politics .”  American Politics Research   37  ( 5 ):  921 –50.  

    Jackson  ,   Matthew O  .  2008 .  Social and Economic Networks .  Princeton, NJ : 
 Princeton University Press .  

    Klofstad  ,   Casey A.  ,   Anand     Edward Sokhey  , and   Scott D     McClurg  .  2013 . 
“ Disagreeing about Disagreement: How Conflict in Social Networks 
Aff ects Political Behavior .”  American Journal of Political Science   
57  ( 1 ):  120 –34.  

    Lazer  ,   David  .  2011 . “ Networks in Political Science: Back to the Future .” 
 PS: Political Science and Politics   44  ( 1 ):  61 – 68 .  

    May  ,   K. O  .  1952 . “ A Set of Independent Necessary and Sufficient Conditions 
for Simple Majority Decision .”  Econometrica   20  ( 4 ):  680 –84.  

    McClurg  ,   Scott D  .  2006 . “ The Electoral Relevance of Political Talk: Examining 
Disagreement and Expertise Eff ects in Social Networks on Political 
Participation .”  American Journal of Political Science   50  ( 3 ):  737 –54.  

    McClurg  ,   Scott D.   and   Joseph K     Young  .  2011 . “ Political Networks .” 
 PS: Political Science and Politics   44  ( 1 ):  39 – 43 .  

    McCubbins  ,   Mathew D.  ,   Ramamohan     Paturi  , and   Nicholas     Weller  .  2009 . 
“ Connected Coordination: Network Structure and Group Coordination .” 
 American Politics Research   37  ( 5 ):  899 – 920 .  

    Mintrom  ,   Michael  , and   Sandra     Vergari  .  1998 . “  Networks and Innovation 
Diff usion: The Case of State Education Reforms .”  Journal of Politics  
 60 :  126 –48.  

    Muller  ,   Eitan  , and   Mark A.     Satterthwaite  .  1977 . “ The Equivalence of Strong 
Positive Association and Strategy-Proofness .”  Journal of Economic Theory  
 14  ( 2 ):  412 –18.  

    Mutz  ,   Diana C  .  2002 . “ The Consequences of Cross-Cutting Networks for 
Political Participation .”  American Journal of Political Science  
 46  ( 4 ):  838 –55.  

    Nardo  ,   Michela Michaela Saisana  ,   Andrea     Saltelli  ,   Stefano     Tarantola  , 
  Anders     Hoff man  , and   Enrico     Giovannini  .  2005 .   Handbook on Constructing 
Composite Indicators: Methodology and User Guide . Technical report, OECD 
Publishing, Paris, France .  

    Newman  ,   Mark  .  2010 .  Networks: An Introduction .  New York :  Oxford University 
Press .  

    Padgett  ,   John F.  , and   Christopher K     Ansell  .  1993 . “ Robust Action and 
the Rise of the Medici, 1400–1434 .”  American Journal of Sociology  
 98  ( 6 ):  1259 – 1319 .  

    Patty  ,   John W.   and   Elizabeth Maggie     Penn  .  2014a . “ Sequential Decision-
Making and Information Aggregation in Small Networks .”  Political Science 
Research & Methods   2  ( 2 ):  243 – 71 .  

    ——— .  2014b .  Social Choice and Legitimacy: The Possibilities of Impossibility .  
New York :  Cambridge Universsity Press .  

    Rhodes  ,   R. A. W  .  1990 . “ Policy Networks .”  Journal of Theoretical Politics  
 2  ( 3 ):  293 .  

    Satterthwaite  ,   Mark A  .  1975 . “ Strategy-Proofness and Arrow’s Conditions: 
Existence and Correspondence Theorems for Voting Procedures and Social 
Welfare Functions .”  Journal of Economic Theory   10  ( 2 ):  187 – 217 .  

    Siegel  ,   David A  .  2011 . “ Social Networks in Comparative Perspective .” 
 PS: Political Science and Politics   44  ( 1 ):  51 – 54 .  

    Simmons  ,   Beth  ,   Frank     Dobbin  , and   Geoff rey     Garrett  .  2007 . “ The Global 
Diff usion of Public Policies: Social Construction, Coercion, Competition, 
or Learning.?   Annual Review of Sociology   33  ( 1 ):  449 – 472 .  

    van den Brink  ,   Rene  , and   Robert P.     Gilles  .  2003 . “ Ranking by Outdegree for 
Directed Graphs .”  Discrete Mathematics   271 ( 1 ):  261 –70.  

    Ward  ,   Michael D.  ,   Katherine     Stovel  , and   Audrey     Sacks  .  2011 .  Network Analysis 
and Political Science .  Annual Review of Political Science   14 :  245 –64.  

    Zhang  ,   Y.  , and   A. J.     Friend  ,   A. L.     Traud  ,   M. A.     Porter  ,   J. H.     Fowler  , and 
  P. J.     Mucha  .  2008 . “ Community Structure in Congressional Cosponsorship 
Networks .”  Physica A: Statistical Mechanics and its Applications   387  ( 7 ): 
 1705 –12.    


